DOI QR코드

DOI QR Code

Study on Manufacture of High Purity TiCl4 and Synthesis of High Purity Ti Powders

고순도 TiCl4 제조 및 이를 활용한 고순도 Ti 분말 제조 공정 연구

  • Lee, Jieun (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Yoon, Jin-Ho (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Lee, Chan Gi (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering)
  • 이지은 (고등기술연구원 융합소재연구센터) ;
  • 윤진호 (고등기술연구원 융합소재연구센터) ;
  • 이찬기 (고등기술연구원 융합소재연구센터)
  • Received : 2019.06.20
  • Accepted : 2019.08.09
  • Published : 2019.08.28

Abstract

Ti has received considerable attention for aerospace, vehicle, and semiconductor industry applications because of its acid-resistant nature, low density, and high mechanical strength. A common precursor used for preparing Ti materials is $TiCl_4$. To prepare high-purity $TiCl_4$, a process based on the removal of $VOCl_3$ has been widely applied. However, $VOCl_3$ removal by distillation and condensation is difficult because of the similar physical properties of $TiCl_4$ and $VOCl_3$. To circumvent this problem, in this study, we have developed a process for $VOCl_3$ removal using Cu powder and mineral oil as purifying agents. The effects of reaction time and temperature, and ratio of purifying agents on the $VOCl_3$ removal efficiency are investigated by chemical and structural measurements. Clear $TiCl_4$ is obtained after the removal of $VOCl_3$. Notably, complete removal of $VOCl_3$ is achieved with 2.0 wt% of mineral oil. Moreover, the refined $TiCl_4$ is used as a precursor for the synthesis of Ti powder. Ti powder is fabricated by a thermal reduction process at $1,100^{\circ}C$ using an $H_2-Ar$ gas mixture. The average size of the Ti powder particles is in the range of $1-3{\mu}m$.

Keywords

References

  1. G. G. Lee, S. K. Jo, M. S. Choi, J. Y. Jung and M. C. Kim: Trends in Metals & Materials Engineering, 22 (2009) 19.
  2. S. D. Choi, S. Y. Hwang, J. Y. Jung and M. C. Kim: Trends in Metals & Materials Engineering, 21 (2008) 17.
  3. Y. T. Lee and D. G. Lee: Trends in Metals & Materials Engineering, 21 (2008) 8.
  4. L. Hockaday and A. Kale: Tenth International Heavy Minerals Conference, 1 (2016) 63.
  5. H. H. Schaumann: USA, US2689781A (1954).
  6. A. Kale and K. Bisaka: J. South Afr. Inst. Min. Metall., 111 (2011) 193.
  7. E. W. Nelson: USA, US3495383A (1970).
  8. G. J. Dooley III: JOM, 27 (1975) 8. https://doi.org/10.1007/bf03355886
  9. S. Xiong, Z. Yuan, Z. Yin and W. Yan: Hydrometallurgy, 119 (2012) 16. https://doi.org/10.1016/j.hydromet.2012.03.004
  10. J. Goddard and M. Litwin: USA, US20020179427A1 (2002).
  11. G. Sironi, R. Sacerdote and F. Ferrero: USA, US3627481A (1971).
  12. A. B. Murphy: J. Phys. D: Appl. Phys., 37 (2004) 2841. https://doi.org/10.1088/0022-3727/37/20/010
  13. M. Horikawa, A. Matsuda and T. Kamiya: Japan, JP3734687B2 (2000).
  14. X. Wang, L. Zhang, G. Shang, G. Zhang, J. Yuan and S. Gong: Hydrometallurgy, 99 (2009) 259. https://doi.org/10.1016/j.hydromet.2009.09.001
  15. J. K. Park and J. P. Ahn: J. Korean Powder Metall. Inst., 9 (2002) 1. https://doi.org/10.4150/KPMI.2002.9.1.001
  16. J. H. Park, D. W. Lee and J. Kim: J. Korean Powder Metall. Inst., 17 (2010) 385. https://doi.org/10.4150/KPMI.2010.17.5.385