• Title/Summary/Keyword: Ti powder

Search Result 1,433, Processing Time 0.026 seconds

Studies on Preparation of $TiO_2$Powder with High Purity and Fine Particle -A Study of Fine Particle(III)- (고순도.미립 $TiO_2$분말 제조에 관한 연구 -미립화 연구(III)-)

  • 최병현;허혜경;지미정;정경원;김무경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.944-948
    • /
    • 2000
  • TiCl$_4$, 물 및 propanol의 혼합용액으로부터 가수분해하여 미립의 TiO$_2$분말을 제조할 때 HPC 첨가와 HPC 존재하에서 TiCl$_4$mole 농도 및 유기용매 처리를 했을 때 입자크기, 응집성 및 형태 등을 관찰하였다. HPC는 TiO$_2$합성시 steric dispersant로 작용하여 응집을 적게 하는 경향을 나타내었고 HPC를 첨가한 상태에서 TiCl$_4$의 mole 농도 변화는 입자크기에 크게 영향을 주었는데 TiCl$_4$mole 농도가 증가함에 따라 입자크기는 증가하였다. 또한 유기용제 처리는 분산 효과가 있었다.

  • PDF

Effects of $Y_2O_3$ Addition on the Microstructure and Electrical Property of $TiO_2$-excess $BaTiO_3$

  • Kim, Jong-Han;Han, Young-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1095-1096
    • /
    • 2006
  • When $Y_2O_3$ was added to Ti-excess $BaTiO_3$ ((Ba+Y)/Ti =1), the area occupied by $Y^{3+}$ ion was confirmed by its microstructure development, electrical conductivity behavior and lattice constant. Grain growth inhibition was observed when the content of donor dopant exceeded a critical value ($x{\approx}.0.01$) in $BaTiO_3+x(0.5Y_2O_3+TiO_2)$ system. A donor-doped behavior was observed at various Y contents ($0.2\sim3.0$ mol% Y) when $Y_2O_3$ was added to $TiO_2$-excess $BaTiO_3$. As Y content was increased, (002) and (200) peaks shifted to higher angles and the lattice constant (a and c axis) decreased gradually.

  • PDF

Formation of a Core/Rim Structure in Ti(C, N)-based Cermets (Ti(C, N)계 써메트의 유심구조 형성거동)

  • Kim, Suk-Hwan
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.10-17
    • /
    • 2006
  • Model experiment was introduced to obtain the formation of a core/rim structure by only liquid phase reaction in Ti(C, N)-based cermet alloys. Infiltrated Ti(C, N)-Ni, $MO_2C-Ni$, and TaC-Ni cermets were bonded to sandwiched specimen by heat treatment $1450^{\circ}C$ for 5hr. With nitrogen addition, both (Ti, Mo) (C, N) and (Ti, Ta) (C, N) rim structure was nucleated around comer of cuboidal Ti(C, N) core. However, equilibrium shapes of(Ti, Mo) (C, N) and (Ti, Ta) (C, N) rim were different possibly due to the effect of interface energy. The core/rim and rim! binder interfaces were parallel to each other with TaC addition, while rotated to each other with $MO_2C$ addition.

Effect of TiC Content on Oxidation Behavior of Sintered WC-TiC-TaC Alloys

  • Tanaka, Hiroki;Mouri, Shigeki;Nakahara, Kenji;Sano, Hideaki;Zheng, Guo Bin;Uchiyama, Yasuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.352-353
    • /
    • 2006
  • The effect of TiC content on oxidation behavior of the sintered WC-TiC-TaC alloys with 2 mass% TaC and different TiC amounts of 3-45 mass% was investigated through oxidation tests in air at 973K. As a result of the tests, it was revealed that with increasing TiC content in the alloys, mass changes caused by oxidation and thickness of the scale decreased. Thus, it is considered that the main component of the scales changed gradually from $WO_3$ to $TiO_2$ with increasing TiC content in the alloys, and oxygen diffusion through the scale to the alloys was inhibited gradually.

  • PDF

Structural and Mechanical Properties of Multilayered CVD TiC/TiCN Coatings with Variations of Multilayer Period

  • Park, Geun-Woo;Kwon, Hyuck-Sang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.638-639
    • /
    • 2006
  • Multilayered coatings on tungsten carbide cutting tools are widely used for enhancing cutting performance. In this paper, we review the CVD TiC/TiCN multilayer as a function of the multilayer period. The TiC/TiCN multilayers in initial stage show preferred (220) orientation but shifts to (200) orientation with decreasing multilayer period. The nanohardness of TiC/TiCN multilayers were found to increase with decreasing multilayer period and shows a maximum of 23.8 GPa at a period = 33.5 nm.

  • PDF

Phase Changes of Mechanically Alloyed TiNi Powders by Heat-treatment and Microstructural Properties in the Al/TiNi Sintered Materials (기계적합금화시킨 TiNi 분말의 열처리조건에 따른 상변화 및 Al/TiNi소결체 내에서의 미세조직 특성)

  • 차성수
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.174-180
    • /
    • 1996
  • Microstructure and phase transformation of mechanically alloyed TiNi powders added to aluminium matrix for enhancing the damping properties were studied. Four compositions between 48.5 and 51.5 at% Ti intermetallic compounds were selected to control the fraction of martensite phase. Mechanically alloyed TiNi powders were heat-treated at vacuum of $10^{-6}$ torr for crystallization. Ball milled AI/TiNi composite powders were swaged at room temperature and rolled at 450 $^{\circ}C$. After mechanical alloying for 10 hours, Ti and Ni elements were alloyed completely and amorphous phase was formed. Amorphous phase was crystallized to martensite (Bl9') and austenite(B2) after heat treating for 1 hour at the temperature of 850 $^{\circ}C$, and TiNi$_3$, intermetallic compound was partially formed. Considerable amount of martensite phase was remained after swaging and rolling.

  • PDF

Studies on Preparation of $Ti_3SiC_2$ Particulate Reinforced Cu Matrix Composite by Warm Compaction and its Tribological Behavior

  • Ngai, Tungwai L.;Xiao, Zhiyu;Wu, Yuanbiao;Li, Yuanyuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.853-854
    • /
    • 2006
  • Warm compaction powder metallurgy was used to produce a $Ti_3SiC_2$ particulate reinforced Cu matrix composite. Fabrication parameters and warm compaction behaviors of Cu powder were studied. Based on the optimized fabrication parameters a Cu-based electrical contact material was prepared. Results showed that in expend of some electrical conductivity, addition of $Ti_3SiC_2$ particulate increased the hardness, wear resistivity and anti-friction ability of the sintered Cu-base material.

  • PDF

Photolytic Characteristics of TiO2 Treated by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어 방전으로 표면처리된 TiO2 분말의 광분해 특성)

  • Kang, Jeong A;Kim, Yoon Kee
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.406-411
    • /
    • 2016
  • In order to reuse the photocatalyst and enhance the photolysis efficiency, we have used atmospheric pressure dielectric barrier discharge (APDBD) to clean and activate $TiO_2$ powder. The photocatalytic activity of the $TiO_2$ powder before and after APDBD treatment was evaluated by the degradation of methylene blue (MB) in aqueous solution. The apparent reaction rate constant of photolysis of the first sample of reused $TiO_2$ cleaned by APDBD improved to a level up to 0.32h-1 higher than the 30 % value of the initial $TiO_2$ powder. As the number of photolysis reactions and APDBD cleanings increased, the apparent rate constants gradually decreased; however, the fourth photolysis reaction still showed a value that was greater than 10% of the initial value. In addition, APDBD treatment enhanced the process by which $TiO_2$ effectively adsorbed MB at every photolysis stage.

Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems (마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성)

  • 홍대석;이성희;이충효;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process (LPBF용 타이타늄 합금 분말의 유변특성에 대한 입자 구형도의 영향)

  • Kim, T.Y.;Kang, M.H.;Kim, J.H.;Hong, J.K.;Yu, J.H.;Lee, J.I.
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.99-109
    • /
    • 2022
  • Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.