Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.8.406

Photolytic Characteristics of TiO2 Treated by Atmospheric Pressure Dielectric Barrier Discharge  

Kang, Jeong A (Department of Advanced Materials Engineering, Hanbat National University)
Kim, Yoon Kee (Department of Advanced Materials Engineering, Hanbat National University)
Publication Information
Korean Journal of Materials Research / v.26, no.8, 2016 , pp. 406-411 More about this Journal
Abstract
In order to reuse the photocatalyst and enhance the photolysis efficiency, we have used atmospheric pressure dielectric barrier discharge (APDBD) to clean and activate $TiO_2$ powder. The photocatalytic activity of the $TiO_2$ powder before and after APDBD treatment was evaluated by the degradation of methylene blue (MB) in aqueous solution. The apparent reaction rate constant of photolysis of the first sample of reused $TiO_2$ cleaned by APDBD improved to a level up to 0.32h-1 higher than the 30 % value of the initial $TiO_2$ powder. As the number of photolysis reactions and APDBD cleanings increased, the apparent rate constants gradually decreased; however, the fourth photolysis reaction still showed a value that was greater than 10% of the initial value. In addition, APDBD treatment enhanced the process by which $TiO_2$ effectively adsorbed MB at every photolysis stage.
Keywords
photolysis; $TiO_2$; dielectric barrier discharge; surface treatment; cleaning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep., 63, 515 (2008).   DOI
2 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).   DOI
3 M. Anpo and Y. Kubokawa, Res. Chem. Intermed., 8, 105 (1987).   DOI
4 N. M. Dimitrijevic, Z. V. Saponjic, B. M. Rabatic and T. Rajh. J. Am. Chem. Soc., 127, 1344 (2005).   DOI
5 T.-H. Kim, S.-W. Lee, G. Gyawali and Y.-H. Jo, Int. J. Appl. Ceram. Technol., 12, 577 (2015).   DOI
6 G. Liu, L. Wang, H. G. Yang, H. M. Cheng and G. Q. Lu, J. Mater. Chem., 20, 831 (2010).   DOI
7 A. Di Paola, L. Palmisano, M. Derrigo and V. Augugliaro, J. Phys. Chem. B, 101, 876 (1997).   DOI
8 K.-Y. Kim, J. Ryu, B.-D. Hahn, J.-J. Choi, W.-H. Yoon, B.-K. Lee, D.-S. Park and C. Park, J. Korean Ceram. Soc., 45, 839 (2008).   DOI
9 I. G. Jo, C. W, Ji, C. Y. Choi, Y. S. Kim and Y. D. Kim, J. Korean Inst. Surf. Eng., 41, 240 (2008).   DOI
10 Y. K. Kim, M. Eichler and C.-P. Klages, Surf. Coat. Technol., 171, 321 (2003).   DOI
11 G. S. Selwyn, H. W. Herrmann, J. Park and I. Henins, Contrib. Plasma Phys., 6, 610 (2001).
12 T. K. Le, D. Flahaut, H. Martinez, H. K. H. Nguyen and T. K. X. Huynh, Appl. Catal. B, 165, 260 (2015).   DOI
13 N. M. Jacob, P. Kuruva, G. Madras and T. Thomas, Ind. Eng. Chem. Res., 52, 16384 (2013).   DOI
14 C.-H. Yi, Y-H. Lee, D. W. Kim and G.-Y. Yeom, Surf. Coat. Technol., 163-164, 723 (2003).   DOI
15 T. Homola, J. Matousek. V. Medvecka, A. Zahoranova, M. Kormunda, D. Kovacik and M. Cernak, Appl. Surf. Sci., 258, 7135 (2012).   DOI