• Title/Summary/Keyword: Ti plasmid

Search Result 57, Processing Time 0.019 seconds

The Role of S RNase Associated with Gametophytic Self-Incompatibility in Tomato (Lycopersicon peruvianum) (토마토 자가불화합성에 관여하는 S RNase 유전자의 기능)

  • 강나영;김명희;조규형;신동일;김달웅;박희성;정일경
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.3
    • /
    • pp.219-226
    • /
    • 2000
  • Lycopersicon peruvianum has a gametophytic self-incompatibility (GSI) mechanism controlled by a single genetic locus (S locus) with multiple alleles. S RNases, an allelic series of abundant stylar proteins, are products of the S locus in L. peruvianum and other Solanaceous plants. The $S_{11}$ RNase gene from L. peruvianum was introduced into a self-compatible (SC) species (Lycopersicon esculentum) to examine whether the expression pattern in the heterologous host mimics that in L. peruvianum. The resultant transgenic L. esculentum plants expressed the introduced gene highly in their styles, which is similar manner to the expresion in L. peruvianum. The $S_{11}$ RNase gene was expressed in the syle at a similar stage of flower development in both transgenic plants of L. esculentum and L. peruvianum without any morphological changes.

  • PDF

Acclimatization of in vitro Plantlets of Wasabia japonica(Miq.) Matsum. Derived from the Apical Meristem Culture (고추냉이(Wasabia japonica (Miq.) Matsum.)의 정단분열조직유래 기내묘의 순화)

  • 은종선
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.257-261
    • /
    • 1998
  • The repeated subcultures of in vitro plant materials in wasabi became highly vitrified and the capacity for multiple shoot formation from the vitrified plant materials was very low. In order to improve the quality of in vitro propagated planting materials, the experiments were carried out using culture vessels capped with membrane filter(MF). When vitrified shoots were cultured on MS medium with 0.2mg/L BA in the vessels with MF or without MF for 60 days, the shoots in the vessels with MF did not vitrified. In contrast, the shoots grown in the vessels without MF vitrified at 65%. The stomates of vitrified leaves were circular and inflated, whereas those of normal leaves acclimatizated in the vessels with MF were ovate in shape. The hardened shoots were also cultured on MS media without sucrose containing 0.01mg/L IBA in vessels with(photoautotrophic culture) or without(control) MF. Sucrose was necessary for survival of the in vitro plantlets in the vessels without MF. After 20 days of culture, the shoots in the vessels without MF on the sucrose-free media turned yellow and died. But the shoots in the vessels with MF in the sucrose-free media produced a lot of roots. When shoots were cultured on MS medium with 2% sucrose containing 0.01mg/L IBA in the vessels with(photomixotrophic culture) or without(heterotrophic culture) MF, best growth occured in photomixotrophic culture.

  • PDF

Astaxanthin Biosynthesis in Transgenic Arabidopsis by Using Chyb Gene Encoding β-Carotene Hydroxylase (β-Carotene Hydroxylase 관련 Chyb 유전자를 이용한 형질전환 Arabidopsis에서 Astaxanthin의 생합성)

  • Lee, Ho-Jae;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.231-237
    • /
    • 2004
  • Oxycarotenoids are oxygenated carotenoids that perform critical roles in plants. $\beta$-Carotene hydroxylase adds hydroxyl groups to the $\beta$-rings of carotenes and has been cloned from several bacteria and plants including Arabidopsis. This study was carried out to investigate the effect of $\beta$-carotene hydroxylase gene (Chyb) on the oxycarotenoids biosynthesis in the transgenic Arabidopsis. Construct of pGCHYB containing Chyb was established onto Gateway vector system (pENTR3C gateway vector and pH2GW7 destination vector). Arabidopsis thaliana (cv. Columbia) was transformed with Agrobacterium tumerfacience GV3101 harboring pGCHYB construct driven by 35S promoter and hygromycin resistant gene. Seven hundred bases paired PCR products, indicating the presence of Chyb gene, were found in the transformants by PCR analysis using Chyb primers. Hygromycin resistance assay showed that transgenes were stably inherited to next generation. The overexpression of the Chyb gene resulted in the decrease carotenoid content. Especially, astaxanthin unusual oxycarotenoid in wild type Arabidopsis was detected in the transgenic plants. This means that decreased carotenoids might be converted into astaxanthin metabolism with the aid of silent gene in the host.

Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice (형질전환 벼에서 brazzein 감미단백질의 안정적인 발현)

  • Lee, Ye Rim;Akter, Shahina;Lee, In Hye;Jung, Yeo Jin;Park, So Young;Cho, Yong-Gu;Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Brazzein is the smallest sweet protein and was isolated from the fruit pulp of Pentadiplandra brazzeana Baillon, native to tropical Africa. From ancient times, the indigenous people used this fruit in their diet to add sweetness to their daily food. Brazzein is 500 to 2000 times sweeter than sucrose on a weight basis and 9500 times sweeter on a molar basis. This unique property has led to increasing interest in this protein. However, it is expensive and difficult to produce brazzein other than in its native growing conditions which limits its availability for use as a food additive. In this study, we report high production yields of, brazzein protein in transgenic rice plants. An ORF region encoding brazzein and driven by the $2{\times}CaMV\;35S$ promoter was introduced into rice genome (Oryza sativa Japonica) via Agrobacterium-mediated transformation. After transformation, 17 regenerated plant lines were obtained and these transgene-containing plants were confirmed by PCR analysis. In addition, the selected plant lines were analyzed by Taqman PCR and results showed that 9 T0 lines were found to have a single copy out of 17 transgenic plants. Moreover, high and genetically stable expression of brazzein was confirmed by western blot analysis. These results demonstrate that recombinant brazzein was efficiently expressed in transgenic rice plants, and that we have developed a new rice variety with a natural sweetener.

Increment of fructan biosynthesis in rice by transformation of 1-sst and 1-fft genes isolated from jerusalem artichoke (Helianthus tuberosus L.) (돼지감자 유래 1-sst와 1-fft 유전자의 형질전환 발현에 의한 벼의 fructan 생합성 증진)

  • Kang, Kwon-Kyoo;Song, Beom-Heon;Lee, Gyong-A;Lee, Hye-Jung;Park, Jin-Ha;Jung, Yu-Jin;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.102-109
    • /
    • 2010
  • Fructan has been found to accumulate in various tissues during periods when light levels increased carbon fixation where low temperatures reduced growth rates while photosynthesis continued. In this study, we have cloned 1-sucrose:sucrose fructosyl transferase(1-sst) and 1-fructan: fructan fructosyl transferase (1-fft, a key enzyme for the synthesis of fuctan) from Jerusalem Artichoke (Helianthus tuberosus L.). The recombinant vector with 1-sst and 1-fft has been constructed under the control of 35S promoter of KJGV-B2 vector and transgenic plants obtained by Agrobacterium tumefaciens LBA4404. PCR analysis carried out on the putative transgenic plants for amplification of the coding region of specific gene (1-sst, 1-fft), and HPT genes. Transgenic lines carrying of 1-sst and 1-fft were confirmed for integration into the rice genome using Southern blot hybridization and RT-PCR. The transgenic plants in $T_2$ generation were selected and expression pattern analysis revealed that 1-sst and 1-fft were stable. This analysis confirmed the presence of low-molecular-weight fructan in the seedling of the transgenic rices. Therefore, cold tolerance and carbohydrate metabolism will be possible to develop resistant plants using the transgenic rice.

Production of Ginsenoside in Callus of Ginseng Hairy Roots (인삼 모상근의 캘러스를 이용한 ginsenoside 생산)

  • Kwon, Jung-Hee;Cheon, Hyun-Choon;Yang, Deok-Cho
    • Journal of Ginseng Research
    • /
    • v.27 no.2
    • /
    • pp.78-85
    • /
    • 2003
  • By the Agrobacterium rhizogenes A$_4$ were induced a transformed callus of ginseng hairy root and examine to find the possibility whether it can produce certain ginsenoside. Investigations for a finding out to optimal culture medium showed that BA application is better than more factorial composition between auxins and cytokinins. For the induction of hairy root callus of ginseng, l/2 MS medium containing 1 to 3 mg of benzyladenine(BA) per liter gave the best result. The growth of ginseng hairy root callus(GHC) cultured with the 1/2MS medium supplemented with 2 mg BA/L was selected for best suspension cultures. The optimum concentration of BA for ginsenosides production was found to be 2 mg/L. Probably the inoculum size of callus plays a role with the ginsenoside production in suspension culture. AS for inoculum size of callus, 50 mg was superior to 150 mg for growth and ginsenoside production. Ginsenoside contents were highest in the suspension culture grown for four weeks under continuous light condition. In fact that continous light treatment promote strongly the synthesis of ginsenoside of the hairy root callus is first result in the world and the numerously induced root hairs of the callus leads a new method for ginsenoside production.

Iron fortification of grains by introducing a recombinant gene of ferritin with seed promoters in rice (종자 특이 프로모터와 대두 Ferritin 유전자에 의한 벼 종실의 철분강화)

  • Cho, Yong-Gu;Kim, Hyung-Keun;Choi, Jang-Sun;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • The recombinant DNAs, pGBF, pGTF, and pZ4F, using soybean ferritin gene have constructed with the promoters derived from seed proteins, glutelin, globulin, and zein. The recombinant ferritin genes were transformed into rice plant by Agrobacterium-mediated transformation. Iron contents and agronomic traits have been evaluated in the transgenic progenies. The embryogenic calli survived from second selection medium were regenerated at the rates of 19.2% with pGBF, 15.0% with pGTF, and 18.4% with pZ4F in Donganbyeo and 6.7% with pGBF, 11.7% with pGTF, and 3.4% with pZ4F in Hwashinbyeo. The introduction of ferritin gene in putative transgenic rice plants was confirmed by PCR and Southern blot analysis and also the expression of ferritin gene was identified by Northern blot and Western blot analysis. The iron accumulation in transgenic rice grains of the transgenic rice plant, T1-2, with zein promoter and ferritin gene contained 171.4 ppm showing 6.4 times higher than 26.7 ppm of Hwashinbyeo seed as wild type rice, but the transgenic plants with globulin and glutelin showed a bit higher iron contents with a range from 2.1 to 3.0 times compare to wild type grain. The growth responses of transgenic plants showed the large variances in plant height and number of tillers. However, there were some transgenic plants having similar phenotype to wild type plants. In the T1 generation of transgenic plants, plant height, culm length, panicle length, and number of tillers were similar to those of wild type plants, but ripened grain ratio ranged from 53.3% to 82.2% with relatively high variation. The transgenic rice plants would be useful for developing rice varieties with high iron content in rice grains.