DOI QR코드

DOI QR Code

Increment of fructan biosynthesis in rice by transformation of 1-sst and 1-fft genes isolated from jerusalem artichoke (Helianthus tuberosus L.)

돼지감자 유래 1-sst와 1-fft 유전자의 형질전환 발현에 의한 벼의 fructan 생합성 증진

  • Received : 2010.02.25
  • Accepted : 2010.03.10
  • Published : 2010.03.31

Abstract

Fructan has been found to accumulate in various tissues during periods when light levels increased carbon fixation where low temperatures reduced growth rates while photosynthesis continued. In this study, we have cloned 1-sucrose:sucrose fructosyl transferase(1-sst) and 1-fructan: fructan fructosyl transferase (1-fft, a key enzyme for the synthesis of fuctan) from Jerusalem Artichoke (Helianthus tuberosus L.). The recombinant vector with 1-sst and 1-fft has been constructed under the control of 35S promoter of KJGV-B2 vector and transgenic plants obtained by Agrobacterium tumefaciens LBA4404. PCR analysis carried out on the putative transgenic plants for amplification of the coding region of specific gene (1-sst, 1-fft), and HPT genes. Transgenic lines carrying of 1-sst and 1-fft were confirmed for integration into the rice genome using Southern blot hybridization and RT-PCR. The transgenic plants in $T_2$ generation were selected and expression pattern analysis revealed that 1-sst and 1-fft were stable. This analysis confirmed the presence of low-molecular-weight fructan in the seedling of the transgenic rices. Therefore, cold tolerance and carbohydrate metabolism will be possible to develop resistant plants using the transgenic rice.

Fructan은 식물이 저온에 노출 되었을 때 다양한 조직에 축적됨으로써 여러 스트레스에 저항을 나타내는 것으로 알려져 있다. 본 연구에서는 fructan 생합성 경로에 관여하는 효소인 1-sst와 1-fft 유전자를 돼지감자 구근으로 부터 분리하였다. 분리한 1-sst와 1-fft 유전자는 Ti-plasmid vector인 KJG V-B2 vector에 35S promoter에 의해 발현할 수 있도록 형질전환용 벡터를 구축하였다. Agrobacterium tumefaciens법에 의해 1-sst와 1-fft 유전자의 형질전환 벼를 육성하였고, 1-sst, 1-fft 및 HPT 유전자 특이적인 primer를 사용하여 PCR 분석한 결과 유전자가 벼의 callus 게놈내에 안정적으로 삽입되었음을 확인하였다. 또한 Southern 및 RT-PCR 분석에서도 같은 결과를 얻었다. 형질전환 벼의 후대에서도 안정적으로 유전자가 발현되는 homo 계통을 선발하였고 이를 이용해 1-sst와 1-fft 유전자의 삽입이 확인된 형질전환 벼에서 유전자의 발현양상을 알아보기 위해 RT-PCR 및 Real-Time PCR를 수행한 결과 형질전환 벼에서 1-sst와 1-fft 유전자 모두 안정적으로 발현되고 있음을 확인하였다. 또한 1-sst와 1-fft 유전자가 삽입된 형질전환 벼를 이용한 기능 분석 연구를 통해 식물체가 저온에 노출되었을 때 1-sst와 1-fft의 작용에 의해 fructan 생합성량이 증가됨을 알 수 있었다. 따라서 본 연구를 통해 얻어진 fructan 생합성 관련 유전자가 삽입된 형질전환 벼는 탄수화물대사 및 저온, 건조 등의 환경 stress에 대한 내성에 대해 좋은 육종 소재로 이용 가능할 것으로 사료된다.

Keywords

References

  1. Chirgwin JJ, Przbyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18:5294 https://doi.org/10.1021/bi00591a005
  2. Edelman J, Jefford TG (1968) The mechanism of fructan metabolism in higher plants as exemplified in Helianthus tuberosus, New Phytol. 67:517-531 https://doi.org/10.1111/j.1469-8137.1968.tb05480.x
  3. Eude WVD, Michiels A, Wonterghem DV, Vergauwen R, and Laere AV (2000) Cloning, Developmental, and Tissue-Specific Expression of Sucrose:Sucrose 1-Fructosyl Transferase from Taraxacum officinale. Fructan Localizatil in Root, Plant Physiol. 123:71-79 https://doi.org/10.1104/pp.123.1.71
  4. Hellwege Em, Gritscher D, Willmitzer L, Heyer G (1997) Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs, The Plant Journal. 12:1057-1065 https://doi.org/10.1046/j.1365-313X.1997.12051057.x
  5. Hellwege EM, Raap M, Gritscher D, Willmitzer L, Heyer AG (1998) Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-fft cDNAs, FEBS Letter. 427:25-28 https://doi.org/10.1016/S0014-5793(98)00386-X
  6. Hendry GAF (1987) The ecological significance of fructan in contemporary flora, New phytol. 106:201-216 https://doi.org/10.1111/j.1469-8137.1987.tb04803.x
  7. Hochstrasser U, Luscher M, Virgilio CD, Boller T, Wiemken A (1998) Expression of a functional barley sucrose-fuctan 6-fructosyltransferase in the methylotrophic yeast Pichia pastoris, FEBS Letters. 440:356-360 https://doi.org/10.1016/S0014-5793(98)01487-2
  8. Ingrid MM, Andries JK, Johanna CH, Arjen JT (1998) Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. The plant Journal 15(4):489-500 https://doi.org/10.1046/j.1365-313X.1998.00230.x
  9. Livingston III DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants, Cell. Mol. Life Sci. 66:2007-2023 https://doi.org/10.1007/s00018-009-0002-x
  10. Lewis DH (1993) Nomenclature and diagrammatic representation of oligomeric fructans - paper for discussion, New Phytologist, 124:583-594 https://doi.org/10.1111/j.1469-8137.1993.tb03848.x
  11. Pollock CJ, Cairns AJ (1991) Fructan metabolism in grasses and cereals. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:77-101 https://doi.org/10.1146/annurev.pp.42.060191.000453
  12. Roover JD, Vandenbranden K, Laere AV, Eude WVD (1999) Drought induces fructan synthesis and 1-sst (Sucrose:Sucrose 1-Fructosyltransferase) in root and leaves of chicory seedlings (Cichorium intybus L.), Planta 210:808-814 https://doi.org/10.1007/s004250050683
  13. Rose V. (1804) Uber eine eigenthumliche vegetabilische Substanz, Neues Allg. Jahrb. Chem. 3:217-219
  14. Sambrook J, Russel DW (2001) Molecular Cloning: A Laboratory Manual (third ed.), Cold Spring Harbor Laboratary Press, New York
  15. Stevens CV, Meriggi A, Booten K (2001) Chemical Modification of Inulin, a Valuable Renewable Resource, and Its Industrial Applications. Biomacromolecules 2:1-16 https://doi.org/10.1021/bm005642t
  16. Thomson T. (1818) In A System of Chemistry, 5th London edition; Abraham Small: Philadelphia
  17. Vergauwen R, Van Laere A, Van den Ende W (2003) Properties of fructan:fructan 1-fructosyltransferases from Cichorium intybus L. and Echinops ritro L., two asteracean plants storing greatly different types of inulin, Plant Physiology 133:391-401 https://doi.org/10.1104/pp.103.026807
  18. Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate, Plant Physiol. 120:351-360 https://doi.org/10.1104/pp.120.2.351
  19. Wagner W, Keller F, Wiemken A (1983) Fructan metabolism in cereals: induction in leaves and compartmentation in protoplasts and vacuoles, J. Plant Physiol. 112:359-372
  20. Wiemken A, Sprenger N, Boller T (1995) Fructanan Extension of Sucrose by Sucrose. In: Pontis HG, Salerno GL, Escheverria EL (eds) Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology, American Plant Physiology Society, Gainesville