• Title/Summary/Keyword: Ti interlayer

Search Result 120, Processing Time 0.026 seconds

Effects of coating Condition on Adhesive strength Ti$_{x}$N Films Prepared by the DC Magetron Sputtering Method (DC magnetron Sputtering 법으로 제작한 Ti$_{x}$N 박막의 밀착력에 미치는 코팅조건의 영향)

  • 김학동;조성석
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.34-44
    • /
    • 1998
  • Stainless steel is being used widely lor various purposes due to its good corrosion resistance. There has becn much research to produce colored stainless sterl by several methods. In this experiment, we coated TixN film on the SUS304 substrate with thc DC magnetron sputtering system and studied the internal structurc and adhesive strength of the films as a function of the coating conditions. Before lhe specimen was coated, a sputter etching was very effective in removing the$\delta$ Fe(BCC) phase as well as the contaminant and oxide layer as well as increasing rotghness. Five-stage failure mode appeared with increased scratch load with the TIN films coated on the SUS304 in this manner ; tensile failure-,conformal failure-,buckling failure->chipping failurc and spalling Failure. When the failure was terminated at the initial stage, the film will have good adhesion. But, if syalling failure has occurred at the initial scratch, then the adhesion will be poor. The interlayer between thc coated film and thc substratc was homogeneously adhcsive when the $\gamma'-Fe_4N$ phase wasn't detected in the XRD analysis and the adhesive strength only was reduced by surPace defects. But, when the ,$\gamma'-Fe_4N$N phasc was detected in the XRD analysis, the adhesive strength was very poor.

  • PDF

PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR BY CONSIDERING THE SHAPE EFFECT

  • Wee, S.B.;Jeong, S.J.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.594-597
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of 0.2Pb(Mg1/3Nb2/3)O3-0.38PbZrO3-0.42PbTiO3 followed by lamination and burnout & co-firing processes. The actuators of 10 10 0.62 nm3 in size were formed in a way that 60 200 m thick ceramics were stacked alternatively with 5 m thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of 90o/180o domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

Characteristics of Ir-Re Thin Films on WC for Lens Glass Molding by Ion Beam Assisted DC Magnetron Sputtering (Ion beam assisted DC magnetron sputtering에 대한 렌즈 유리 성형용 WC 합금의 Ir-Re 박막 특성)

  • Park, Jong-Seok;Park, Burm-Su;Kang, Sang-Do;Yang, Kook-Hyun;Lee, Kyung-Ku;Lee, Doh-Jae;Lee, Kwang-Min
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.88-93
    • /
    • 2008
  • Ir-Re thin films with Ti interlayer were deposited onto the tungsten carbide substrate by ion beam assisted DC magnetron sputtering. The Ir-Re films were prepared with targets of having two atomic percent of 7:3 and 5:5. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Ir-Re thin film also were examined. The interlayer of pure titanium was formed with 100 nm thickness. The film growth of Ir-30at.%Re was faster than that of Ir-50at.%Re in the same deposition conditions. Ir-Re thin films consisted of dense and columnar structure irrespective of the different target compositions. The values of hardness and adhesion strength of Ir-30at.%Re thin film coated on WC substrate were higher than those of Ir-50at.%Re thin film.

Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area (소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화)

  • Cheong, Seong-Hwee;Song, Oh-Sung;Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2003
  • As and BF$_2$dopants are implanted for the formation of source/drain with dose of 1${\times}$10$^{15}$ ions/$\textrm{cm}^2$∼5${\times}$10$^{15}$ ions/$\textrm{cm}^2$ then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 $\mu\textrm{m}$ CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{V}$ , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{+}$ . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in $CoSi_2$$n^{+}$ , while little variation was observed in $CoSi_2$$p^{+}$ . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of $CoSi_2$$n^{+}$ / and $CoSi_2$/$p^{+}$, which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13$\mu\textrm{m}$ process.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Growth Behavior and Thermal Stability of CoSi2 Layer on Poly-Si Substrate Using Reactive Chemical Vapor Deposition (반응성 CVD를 이용한 다결정 실리콘 기판에서의 CoSi2 layer의 성장거동과 열적 안정성에 관한 연구)

  • Kim, Sun-Il;Lee, Heui-Seung;Park, Jong-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Uniform polycrystalline $CoSi_2$layers have been grown in situ on a polycrystalline Si substrate at temperature near $625^{\circ}C$ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η$^{5}$ -C$_{5}$ H$_{5}$ )(CO)$_2$. The growth behavior and thermal stability of $CoSi_2$layer grown on polycrystalline Si substrates were investigated. The plate-like CoSi$_2$was initially formed with either (111), (220) or (311) interface on polycrystalline Si substrate. As deposition time was increasing, a uniform epitaxial $CoSi_2$layer was grown from the discrete $CoSi_2$plate, where the orientation of the$ CoSi_2$layer is same as the orientation of polycrystalline Si grain. The interface between $CoSi_2$layer and polycrystalline Si substrate was always (111) coherent. The growth of the uniform $CoSi_2$layer had a parabolic relationship with the deposition time. Therefore we confirmed that the growth of $CoSi_2$layer was controlled by diffusion of cobalt. The thermal stability of $CoSi_2$layer on small grain-sized polycrystalline Si substrate has been investigated using sheet resistance measurement at temperature from $600^{\circ}C$ to $900^{\circ}C$. The $CoSi_2$layer was degraded at $900^{\circ}C$. Inserting a TiN interlayer between polycrystalline Si and $_CoSi2$layers improved the thermal stability of $CoSi_2$layer up to $900^{\circ}C$ due to the suppression of the Co diffusion.

A study on the diffusion bonding of the $Al_2$O$_3$ ceramics to metal (A$_2$O$_3$세라믹과 Ni-Cr-Mo鋼과의 인서트 合金을 이용한 擴散接合에 關한 硏究)

  • 김영식;박훈종;김정일
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 1992
  • The joining methods of ceramics to metals which can be expected to obtain high temperature strength are mainly classified into the solid-state diffusion bonding method and the active brazing method. Between these two, the solid-state diffusion bonding method is given attentions as substituting method for active brazing method due to being capable of obtaining higher bonding strength at high temperature and accurate bonding. In this paper, the solid-state diffusion bonding of $Al_{2}$O$_{3}$ ceramics to Ni-Cr-Mo alloy steel (SNCM21) using insert metal was carried out. The insert metal employed in this study was experimentally home-made, Ag-Cu-Ti alloy. Influence of several bonding parameters of $Al_{2}$O$_{3}$SNCM21 joint was quantitatively evaluated by bonding strength test, and microstructural analyses at the interlayer were performed by SEM/EDX. From above experiments, the optimum bonding condition of the solid-state diffusion bonding of $Al_{2}$O$_{3}$/SNCM21 using Ag-Cu-Ti insert metal was determined. Futhermore, high temperature strength and thermal-shock properties of $Al_{2}$O$_{3}$/SNCM21 joint were also examined. The results obtained are as follows. 1. The maximum bonding strength was obtained at the temperature of 95% melting point of insert metal. 2. The high temperature strength of $Al_{2}$O$_{3}$/SNCM21 joint appeared to bemaximum value at test temperature 500.deg.C and the bonding strength with increasingtemperature showed parabolic curve. 3. The strength of thermal-shocked specimens was far deteriorated than those of as-bonded specimens. Especially, water-quenched specimen after heated up to 600.deg. C was directly fractured in quenching.

  • PDF

Development of Insert Metals for the Transient Liquid Phase Bonding in the Directional Solidified Ni Base Super Alloy GTD 111 (일방향응고 니켈기 초내열합금 GTD111에서 천이 액상확산 접합용 삽입금속의 개발에 관한 연구)

  • Lee, Bong-Keun;Oh, In-Seok;Kim, Gil-Moo;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.242-247
    • /
    • 2009
  • On the Transient Liquid Phase Bonding (TLPB) phenomenon with the MBF-50 insert metal at narrow gap (under 100), it takes long time for the bonding and the homogenizing. Typically, isothermal solidification is controlled by the diffusion of depressed element of B and Si. However, the amount of B and Si in the MBF-50 filler metal is large. This is reason of the long bonding time. Also, the MBF-50 filler metal did not contained Al and Ti which are ${\gamma}^{\prime}$ phases former. This is reason of the long homogenizing time. From the bonding phenomenon with the MBF-50 insert metal, we search main factors on the bonding mechanism and select several insert-metals for using the wide-gap TLPB. New insert-metals contained Al and Ti which are ${\gamma}^{\prime}$ phases former and decrease the B then the MBF-50. When the new insert-metal was used on the TLPB, the bonding time was decreased about 1/10 times and homogenizing heat treatment was no needed. In spite of the without homogenizing, the volume fraction of ${\gamma}^{\prime}$ phases in the boned interlayer was equal to homogenizing heat treated specimen which was TLPB with the MBF-50. Finally, the new insert metal named WG1 for the wide-gap TLPB is more efficient then the MBF-50 filler metal without decreasing the bonding characteristic.

SHAPE EFFECT ON PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR

  • Wee, S. B.;Jeong, S. J.;Song, J. S.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.163-168
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of $0.2Pb(Mg_{1/3}Nb_{2/3)O_3-0.38PbZrO_3-0,42PbTiO_3$ followed by lamination and burnout & co-firing processes. The actuators of $10\times10\times0.6~2\textrm{mm}^3$ in size were formed in a way that $60 ~ 200\mu\textrm{m}$ thick were stacked alternatively with $5\mu\textrm{m}$ thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of $90^{\circ}$/$180^{\circ}$ domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

Occurrence and Chemical Composition of White Mica and Ankerite from Laminated Quartz Vein of Samgwang Au-Ag Deposit, Republic of Korea (삼광 금-은 광상의 엽리상 석영맥에서 산출되는 백색운모와 철백운석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • The Samgwang deposit has been one of the largest deposits in Korea. The deposit consists of series of host rocks including Precambrian metasedimentary rocks and Jurassic Baegunsa formation, which unconformably overlies the Precambrian metasedimentary rocks. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. Laminated quartz veins are common in the deposit which contain minerals including quartz, ankerite, white mica, chlorite, apatite, rutile, arsenopyrite, sphalerite, chalcopyrite and galena. The structural formulars of white micas from laminated quartz vein and wallrock alteration are determined to be (K1.02-0.82Na0.02-0.00Ca0.00)(Al1.73-1.58Mg0.26-0.16Fe0.23-0.10Mn0.00Ti0.03-0.01Cr0.01-0.00)(Si3.35-3.22Al0.79-0.65)O10(OH)2 and (K0.75-0.67Na0.01Ca0.00) (Al1.78-1.74Mg0.16-0.15Fe0.15-0.13Mn0.00Ti0.04-0.02Cr0.01-0.00)(Si3.33-3.26Al0.74-0.67)O10(OH)2, respectively. It suggest that white mica from laminated quartz vein has higher interlayer cation (K+Na+Ca) and Fe+Mg+Mn+Ti content in octahedral site compared to the white mica from the wallrock alteration. Compositional variations in white mica from laminated quartz vein can be caused by phengitic or Tschermark substitution ((Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI)+(Si4+)IV) and (Fe3+)VI <-> (Al3+)VI substitution. Ankerite from laminated quartz vein has compositional variations of FeO and MgO contents along crystal growth direction. The geochemical and textural features suggest that laminated quartz vein from the Samgwang gold-silver deposit was formed during ductile shear stage, which is an important main gold-silver ore-forming event in orogeinc deposit.