• Title/Summary/Keyword: Ti Diffusion barrier

Search Result 105, Processing Time 0.037 seconds

The study of Grain boundary diffusion effect in Tin/Cu by Xps (XPS를 이용한 TiN/Cu의 Grain boundary diffusion 연구)

  • 임관용;이연승;정용덕;이경민;황정남;최범식;원정연;강희재
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.112-117
    • /
    • 1998
  • TiN has been investigated as a good candidate for a diffusion barrier of Cu. Therefore, in this study, the grain boundary diffusion of Cu in TiN film was investigated by X-ray photoelectron spectroscopy(XPS). In general, TiN has a columnar grain structure. In the relatively lower temperature, less than 1/3 of the melting point, it was observed that Cu diffused into TiN mainly along the grain boundaries of TiN. The grain size of TiN was measured by atomic force microscope (AFM). In order to estimate the grain boundary diffusion constants, we used the modified surface accumulation method. The activation energy, $Q_b$ was 0.23 eV, and the diffusivity, $D_{bo}$ was $5.5\times10^{-12{\textrm{cm}^2$/sec.

  • PDF

Interdiffusion in Cu/Capping Layer/NiSi Contacts (Cu/Capping Layer/NiSi 접촉의 상호확산)

  • You, Jung-Joo;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.463-468
    • /
    • 2007
  • The interdiffusion characteristics of Cu-plug/Capping Layer/NiSi contacts were investigated. Capping layers were deposited on Ni/Si to form thermally-stable NiSi and then were utilized as diffusion barriers between Cu/NiSi contacts. Four different capping layers such as Ti, Ta, TiN, and TaN with varying thickness from 20 to 100 nm were employed. When Cu/NiSi contacts without barrier layers were furnace-annealed at $400^{\circ}C$ for 40 min., Cu diffused to the NiSi layer and formed $Cu_3Si$, and thus the NiSi layer was dissociated. But for Cu/Capping Layers/NiSi, the Cu diffusion was completely suppressed for all cases. But Ni was found to diffuse into the Cu layer to form the Cu-Ni(30at.%) solid solution, regardless of material and thickness of capping layers. The source of Ni was attributed to the unreacted Ni after the silicidation heat-treatment, and the excess Ni generated by the transformation of $Ni_2Si$ to NiSi during long furnace-annealing.

Formation of $PbTiO_3$ Thin Films by Thermal Diffusion from Multilayrs (다층 구조로부터 열 확산에 의한 $PbTiO_3$ 박막의 제조)

  • 서도원;최덕균
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.510-516
    • /
    • 1993
  • $PbTiO_3$ thin films have been formed by rapid thermal annealing(RTA) of $TiO_2$/Pb/$TiO_2$ multilayer films deposited on Si wafers by RF sputtering. Based on the optimal depositon conditions of TiO2 and Pb, $TiO_2$/Pb/$TiO_2$ three layers were deposited for 900$\AA$ each. These films were subjected to RTA process at the temperatures ranging from $400^{\circ}C$ to $900^{\circ}C$ for 30 seconds in air, and were analyzed by X-ray diffraction and transmission electron microscopy to investigate the phases and the microstructures. As a result, perovskite $PbTiO_3$ phases was obtained above $500^{\circ}C$ with the trace of unreacted $TiO_2$. RBS analysis revealed the anisotropic behavior of diffusion that the diffusivity of Pb to the bottom $TiO_2$ layer was faster than that of Pb to the top $TiO_2$ layer. The amorphous Pb-silicate was formed between film and Si substrate due to the diffusion of Pb, but Pb-silicate existed locally at the interface and the amount of that phase was very small. Therefore the effect of bottom $TiO_2$ layer as a diffusion barrier was confirmed. $PbTiO_3$ films formed by current technique showed a relative dielectric constant of 60, and the maximum breakdown field reached 170kV/cm.

  • PDF

Deposition Characteristics of Ti-Si-N Films Deposited by Radio Frequency Reactive Sputtering of Various Ratio of Ti/Si Targets in an $N_2$/Ar Ambient (Ti/Si의 조성비율이 다른 타겟을 이용한 sputtered Ti-Si-N 박막의 증착특성 연구)

  • Park, Sang-Gi;Kang, Bong-Joo;Yang, Hee-Jeong;Lee, Won-Hee;Lee, Eun-Goo;Kim, Hee-Jae;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.580-584
    • /
    • 2001
  • We have investigated the deposition characteristics of Ti-Si-N films obtained by rf magnetron sputtering with ratios of Ti/Si targets in an $Ar/N_2$ gas mixture. The growth rate and stoichiometry dependence of the Ti-Si-N films on the ratio of Ti/Si and $N_2$ flow rate ratio were found to be due to the different nitriding rate of Ti and Si targets. Additionally, their different sputtering yield of nitrified Ti and Si make a reason as well. Lowering Si content in the film favored the formation of crystalline TiN, leading to the low resistivity. Increasing N content led to the Ti-Si-N films having a higher density and compressive stress, suggesting that the N content in the film is one of the most important factors determining the diffusion barrier characteristics. In the current work, the optimum process conditions for the formation of efficient diffusion barrier of Ti-Si-N film has successfully obtained by manipulating the Ti/Si ratio of target and $N_2$ flow rate ratio.

  • PDF