DOI QR코드

DOI QR Code

Interdiffusion in Cu/Capping Layer/NiSi Contacts

Cu/Capping Layer/NiSi 접촉의 상호확산

  • You, Jung-Joo (Department of Electronic Materials Engineering, The University of Suwon) ;
  • Bae, Kyoo-Sik (Department of Electronic Materials Engineering, The University of Suwon)
  • 유정주 (수원대학교 전자재료공학과) ;
  • 배규식 (수원대학교 전자재료공학과)
  • Published : 2007.09.27

Abstract

The interdiffusion characteristics of Cu-plug/Capping Layer/NiSi contacts were investigated. Capping layers were deposited on Ni/Si to form thermally-stable NiSi and then were utilized as diffusion barriers between Cu/NiSi contacts. Four different capping layers such as Ti, Ta, TiN, and TaN with varying thickness from 20 to 100 nm were employed. When Cu/NiSi contacts without barrier layers were furnace-annealed at $400^{\circ}C$ for 40 min., Cu diffused to the NiSi layer and formed $Cu_3Si$, and thus the NiSi layer was dissociated. But for Cu/Capping Layers/NiSi, the Cu diffusion was completely suppressed for all cases. But Ni was found to diffuse into the Cu layer to form the Cu-Ni(30at.%) solid solution, regardless of material and thickness of capping layers. The source of Ni was attributed to the unreacted Ni after the silicidation heat-treatment, and the excess Ni generated by the transformation of $Ni_2Si$ to NiSi during long furnace-annealing.

Keywords

References

  1. C. Fitz, M. Goldbach, A. Dupont, and S. Schmidbauer, Microelectron. Eng., 82, 460 (2005) https://doi.org/10.1016/j.mee.2005.07.043
  2. A. Lauwers, J. A. Kittl, M.J.H. Van Dal, O. Chamirian, M.A. Pawlak, M. de Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maes, Materials Science and Engineering B, 114-115, 29 (2004) https://doi.org/10.1016/j.mseb.2004.07.028
  3. Y. Jung, O. Song, S. Kim, Y. Choi, and C. Kim, Kor. J. Mater. Res., 15(5), 301 (2005) https://doi.org/10.3740/MRSK.2005.15.5.301
  4. D. Z. Chi, D. Mangelinck, A. Z. Zuruzi, A. S. W. Wong, and S. K. Lahiri, J. Electron. Mater., 30(12), 1483 (2001) https://doi.org/10.1007/s11664-001-0162-4
  5. Y. Setiawan, P.S. Lee, C.W. Tan, and K.L. Pey, Thin Solid Films, 504, 153 (2006) https://doi.org/10.1016/j.tsf.2005.09.066
  6. Soo-Jin Park, Ken-Woo Lee, Ju-Youn Kim, Hyung-Tak Jun, and Kyoo-Sik Bae, Kor. J. Mater. Res., 13(7), 460 (2003) https://doi.org/10.3740/MRSK.2003.13.7.460
  7. Chi-Chang Wu, Wen-Fa Wu, P.Y. Su, L.J. Chen, and Fe-Hsiang Ko, Microelectron. Eng., 84(5-8), 1801 (2007) https://doi.org/10.1016/j.mee.2007.01.198
  8. Sungjin Hong and Jaegab Lee, Kor. J. Mater. Res., 12(11), 889 (2002) https://doi.org/10.3740/MRSK.2002.12.11.889
  9. S. Song, Y. Liu, M. Li, D. Mao, C. Chang, and H. Ling, Microelectron. Eng., 83, 423 (2006) https://doi.org/10.1016/j.mee.2005.11.005
  10. Ken-Woo Lee, Ju-Youn Kim, and Kyoo-Sik Bae, Kor. J. Mater. Res., 15(5), 318 (2005) https://doi.org/10.3740/MRSK.2005.15.5.318
  11. Chao-Chun Wang, Hsin-Hung Lin and Mao-Chieh Chen, Jap. J. Appl. Phys., 43(9A), 5997 (2004) https://doi.org/10.1143/JJAP.43.5997
  12. W. L. Yang, W-F Fa, H. C You, K-L Ou, T. F. Lei, and C-P Chou, IEEE Trans. Electron Devices ED-49(11), 1947 (2002) https://doi.org/10.1109/TED.2002.804692
  13. Jung-Joo You and Kyoo-Sik Bae, Kor. J. Mater. Res., 16(10), 614 (2006) https://doi.org/10.3740/MRSK.2006.16.10.614
  14. N. Mattoso, J. Mater. Sci., 30, 3242 (1995) https://doi.org/10.1007/BF01209244
  15. E. A. Brandes and G.B Brook, Smithells Metals Reference Handbook(7th ed.), 8-21, Butterwarth, London (1992)
  16. M. Barter and M.-A. Nicolet, Thin Solid Films, 91, 89 (1982) https://doi.org/10.1016/0040-6090(82)90422-9
  17. J. Li, Y. Shacham-Diamand, and J. W. Mayer, 1991 IEEE-VMIC Conf. 153 (June 11-12, 1991) https://doi.org/10.1109/VMIC.1991.152979
  18. L. S. Hung and J. W. Mayer, Thin Solid Films, 109, 85 (1983) https://doi.org/10.1016/0040-6090(83)90033-0
  19. J. E. Lewis and P. S. Ho, J. Vac. Sci. Technol., 20(3), 466 (1982) https://doi.org/10.1116/1.571335
  20. F. Cardarelli, Materials Handbook, 531-535, Springer-Verlag, London (2001)