• Title/Summary/Keyword: Thrust Vector Control

Search Result 144, Processing Time 0.034 seconds

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.46-52
    • /
    • 2006
  • Techniques used for thrust vector control in rocket motors are mainly classified nozzles installed mechanical interference on the expansive region of nozzle(such as jet tabs and jet vanes) and movable nozzles(such as ball&socket and flexible seal). Using the numerical analysis and cold-flow test, this paper evaluates the performance of supersonic nozzle with asymmetric entrance shape when the test nozzle, especially ball&socket, is tilted. Numerical result shows that the effect of the asymmetric entrance shape on the flow field is suddenly diminished at the nozzle throat and downstream is mostly free from the effect of asymmetric entrance shape. Although the calculated thrust and lateral force are less than those of cold-flow test, two results show a fairly good agreement. But the cold-flow test results indicate the effective angles calculated from measured forces are not agreement with the geometric angles.

A Study on the Position Control of Permanent Magnet Sychronous Motor using the State Observer (상태관측기에 의한 영구자석동기전동기의 위치제어에 관한 연구)

  • Cho, Kwang-Seung;Park, Sung-Won;Moon, Baek-Young;Shin, Dong-Ryul;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.378-380
    • /
    • 2000
  • According to the rapid growth of high speed and precise industry the application of synchronous motor has been increased. In the application fields, the fast dynamic response is of prime importance. In particular, since the PMSM has characteristics of high speed, high thrust, it has used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, using the state observer, robust vector position control method for the purpose of improving the system performance deterioration caused by parameter variations is proposed.

  • PDF

Modeling and Vector Control of HA-PMLSM using film-coil (필름코일을 이용한 HA-PMLSM의 모델링 및 벡터제어)

  • Jang, S.M.;Chang, K.W.;Lee, S.H.;Jeong, S.S.;Jin, S.G.;Yoon, I.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.39-41
    • /
    • 2001
  • This paper deals with a simulation and a position control for linear synchronous motor with Halbach array (HA) permanent magnet mover. We derived decouple the forces (thrust, normal force) by magnetic field modeling of the electromagnetic field analysis. The results of control simulation for HA-PM having air-core primary are calculated using M Simulink.

  • PDF

Current Status of Development Test of 75 tonf Engine System for KSLV-II (한국형발사체 75톤급 엔진 개발 시험 현황)

  • Kim, SeungHan;Kim, SeungRyong;Kim, SungHyuk;Kim, ChaeHyung;Seo, DaeBan;Woo, SeongPil;Yu, ByungIl;So, YoonSeok;Lee, KwangJin;Lee, SeungJae;Lee, JungHo;Lim, JiHyuk;Jeon, JunSoo;Cho, NamKyung;Hwang, ChangHwan;Park, Jea-Young;Han, YeongMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.99-103
    • /
    • 2017
  • As a development test of the 75-tonf LOx/Kerosene liquid rocket engine for KSLV-II first Stage Engine, hot firing test of 75-tonf engine are performed. The current status of development test on first stage 75-tonf engine system including combustion chamber, turbopump, gas generator, propellant supply system are presented. During the 75tonf engine test campaign, the development of startup sequence of LOx-Kerosene engine system, engine startup using pyrostarter, ignition of gas generator, steady operation and engine shutdown is successfully performed. As a passenger test during engine hot firing tests, Thrust Vector Control system (TVC) of the engine are also evaluated during engine hot firing test. The results of hot firing test of 75-tonf thrust engine system will be used for the design confirmation and performance evaluation of 75 tonf engine system for KSLV-II first Stage.

  • PDF

Brief Summary of KSLV-I Upper Stage Kick Motor Development (KSLV-I 상단 킥모터 개발 개요)

  • Lee, Hanju;Lee, Jung Ho;Oh, Seung Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2014
  • KSLV-I (Korea Space Launch Vehicle-I) upper stage KM (Kick Motor) is a solid propulsion system which consists of igniter, SAD (Safety Arming Device), composite case, and submerged nozzle capable of TVC (Thrust Vector Control) actuation. Each subsystem of KM fulfilled development requirements for achieving a flight mission successfully. We confirmed the successful development of KM from the $3^{rd}$ flight test results of NARO on January 30, 2013. This article deals with the requirements of KM and the results on configuration management, mass variation, thrust axis alignment, and major test results and so on.

Dynamic Modeling and Stabilization of a Tri-Ducted Fan Unmanned Aerial Vehicles using Lyapunov Control (삼중 덕티드 팬 비행체 운동모델링 및 리아푸노프 제어를 이용한 안정화)

  • Na, Kyung-Seok;Won, Dae-Hee;Yoon, Seok-Hwan;Sung, Sang-Kyung;Ryu, Min-Hyoung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.574-581
    • /
    • 2012
  • Because of the exposed blade, the UAV using the rotors entail the risks during operation. While a wrapped duct around the fan blades reduces risks, it is a higher thrust performance than the same power load rotor. In this paper, for applying advantages of a ducted fan, the tri-ducted fan air vehicle configuration is proposed. The vehicle has three ducted fans. Two of them are the same shape and size and the third one is the smaller. It is possible to control a rapid attitude stability using thrust vector control. The equations of motion of the tri-ducted fan were derived. Lyapunov control input was applied to the system and stable inputs were derived. A nonlinear simulation was fulfilled by using parameters of a prototype vehicle. It verified a stable attitude and analyzed results.

Analysis and Control Parameter Estimation of a Tubular Linear Motor with Halbach and Radial Magnet Array

  • Jang Seok-Myeong;Choi Jang-Young;Cho Han-Wook;Lee Sung-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.154-161
    • /
    • 2005
  • In the machine tool industry, direct drive linear motor technology is an interesting means to achieve high acceleration, and to increase reliability. This paper analyzes and compares the characteristics of a tubular linear motor with Halbach and radial magnet array, respectively. First, the governing equations are established analytically in terms of the magnetic vector potential and two dimensional cylindrical coordinate systems. Then, we derive magnetic field solutions due to the PMs and the currents. Motor thrust, flux linkage and back emf are also derived. The results are shown to be in good conformity with those obtained from the commonly used finite element method. Finally, control parameters are obtained from analytical solutions.

A Study on the Sliding Mode Control of PMLSM using the Slate Observer (상태관측기에 의한 영구자석 선형동기전동기의 슬라이딩모드제어에 관한 연구)

  • 황영민;신동률;최거승;조윤현;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, these fast dynamic response is of prime importance. In particular, since the PMLSM(Permanent Magnet Linear Synchronous Motor) has characteristics of high speed, high thrust, it has been used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, a study of the sliding mode with VSS (Variable Structure System) design for a PMLSM is presented. For fast and precise motion control of PMLSM, the compensation of disturbance and parameter variation is necessary. Hence we eliminate the reaching phase use of VSS that is changed to switching function and vector control using the state observer. And we proposed to sliding mode control algorithm so that realize fast response without overshoot, disturbance and parameter variation.

Implementation of a distributed Control System for Autonomous Underwater Vehicle with VARIVEC Propeller

  • Nagashima, Yutaka;Ishimatsu, Takakazu;Mian, Jamal-Tariq
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.9-12
    • /
    • 1999
  • This paper presents the development of a control architecture for the autonomous underwater vehicle (AUV) with VARIVEC (variable vector) propeller. Moreover this paper also describes the new technique of controlling the servomotors using the Field Programmable Gate Array (FPGA). The AUVs are being currently used fur various work assignments. For the daily measuring task, conventional AUV are too large and too heavy. A small AUV will be necessary for efficient exploration and investigation of a wide range of a sea. AUVs are in the phase of research and development at present and there are still many problems to be solved such as power resources and underwater data transmission. Further, another important task is to make them smaller and lighter for excellent maneuverability and low power. Our goal is to develop a compact and light AUV having the intelligent capabilities. We employed the VARIVEC propeller system utilizing the radio control helicopter elements, which are swash plate and DC servomotors. The VARIVEC propeller can generate six components including thrust, lateral force and moment by changing periodically the blade angle of the propeller during one revolution. It is possible to reduce the number of propellers, mechanism and hence power sources. Our control tests were carried out in an anechoic tank which suppress the reflecting effects of the wall surface. We tested the developed AUV with required performance. Experimental results indicate the effectiveness of our approach. Control of VARIVEC propeller was realized without any difficulty.

  • PDF

Performance Analysis of Neural Network Compensation Algorithm of Multiaxis Thrust Measurement Stand (다축시험대의 신경망 보상 알고리즘 성능 연구)

  • Kim, Joung-Keun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.52-58
    • /
    • 2007
  • The irregular fuel surface was observed by the visualization of hybrid rocket combustion. Even though the test condition maintained oxidizer rich environment, the irregular dark fuel surface was formed as the result of incomplete combustion. In order to investigate the correlation of the characteristics of oxidizer flow and the irregular fuel surface, various flow conditions were imposed such as swirl flow, induced swirl flow by helical fuel configuration and straight flow. Test results revealed no correlation was found between oxidizer flow condition and irregular fuel surface. And this can be a commonly observed phenomena in the tests with different fuel/oxidizer combination. Thus, the irregular fuel surface can be a result of the interaction of blowing flow of vaporized fuel and the boundary layer of oxidizer flow. A further study will be required to confirm the assumption for the formation of irregular fuel surface.