• Title/Summary/Keyword: Three-phase PFC rectifier

Search Result 14, Processing Time 0.021 seconds

Advanced Three-Phase PFC Power Converters with Three-Phase Diode Rectifier and Four-Switch Boost Chopper

  • Nishimura Kazunori;Hirachi Katsuya;Hiraki Eiji;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.356-365
    • /
    • 2006
  • This paper presents an improved three-phase PFC power rectifier with a three-phase diode rectifier cascaded four-switch boost converter. Its operating principle contains the operating principle of two conventional three-phase PFC power rectifiers: one switch boost converter type and a two switch boost converter type. The operating characteristics of the four switch boost converter type three-phase PFC power rectifier are evaluated from a practical point of view, being compared with one switch boost converter type and two switch boost converter topologies.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Three-phase Three-level Boost-type Front-end PFC Rectifier for Improving Power Quality at Input AC Mains of Telecom Loads

  • Saravana, Prakash P.;Kalpana, R.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1819-1829
    • /
    • 2018
  • A three-phase, three-switch, and three-level boost-type PWM rectifier (Vienna rectifier) is proposed as an active front-end power factor correction (PFC) rectifier for telecom loads. The proposed active front-end PFC rectifier system is modeled by the switching cycle average model. The relation between duty ratios and DC link capacitor voltages is derived in terms of the system input currents. Furthermore, the feasible switching states are identified and applied to the proposed system to reduce the switching stress and DC ripples. A detailed equivalent circuit analysis of the proposed front-end PFC rectifier is conducted, and its performance is verified through simulations in MATLAB. Simulation results are verified using an experimental setup of an active front-end PFC rectifier that was developed in the laboratory. Simulation and experimental results demonstrate the improved power quality parameters that are in accordance with the IEEE and IEC standards.

An Active Auxiliary Quasi-Resonant Commutation Block Snubber-Assisted Three Phase Voltage Source Soft Switching PFC Rectifier using IGBTs

  • Hiraki Eiji;Nakaoka Mutsuo;Sugimoto Shigeyuki;Ogawa Shigeaki
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • This paper presents a novel prototype of an active auxiliary quasi-resonant snubber(Auxiliary Quasi-Resonant Commutation Block-Link; ARCB)-assisted three phase voltage source soft switching space voltage vector modulated PFC rectifier, which uses Zero Voltage Soft Switching (ZVS) commutation. The operating principles of this digitally-controlled three phase soft switching PWM-PFC rectifier system with an instantaneous power feedback scheme are illustrated and its steady-state performance is evaluated using computer-aided simulation analysis.

Space Vector Modulated Three-Phase Soft-Switching Active Rectifier and Its Performance Evaluations

  • Fujii Yuma;Ahmed Tarek;Imamura Kosuke;Hiraki Eiji;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.213-215
    • /
    • 2003
  • This paper presents an instantaneous space vector modulated voltage source type three-phase soft-switching PFC rectifier using a single auxiliary resonant DC Link snubber for alternative energy utilizations. in the first place, the operating principle of an active auxiliary resonant DC link snubber circuit is described including its unique features. In the next place, the simulation analysis of three-phase soft-switching PWM rectifier is implemented, and the operating performances or the three-phase voltage-fed PWM rectifier treated here, which can operate under the conditions of sinewave line current shaping and utility power factor are evaluated and discussed on tile basis of this simulation results.

  • PDF

A Study on the Algorithm for Single Phase Control of IGBT PWM Rectifier (IGBT PWM Rectifier의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Park, Jae-Beom;Tae, Dong-Hyun;Kim, Seung-Jong;Song, Joong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.26-33
    • /
    • 2016
  • Recently, the use of transformer-less UPS has increased to improve the efficiency of UPS. However, transformer-less UPS is required in three-phase four-wire input IGBT PWM rectifier and the existing three-phase three-wire PFC algorithm cannot be applied in the three-phase four-wire system due to the neutral current problem of UPS input. To control the three-phase four-wire input IGBT PWM rectifier, there are two existing algorithms: 3D SVM and single phase control method. These two algorithms have advantages/disadvantages in controlling the rectifier. The single phase control method is unstable for controlling the rectifier and the 3D SVM method has a problem that must increase the L value of the input-side inductor considerably. Therefore, this paper proposes digital single phase control technology and another new algorithm considering the d-q control, to improve the characteristics of the existing control algorithm. In addition, this paper performed a simulation and experiment based on the proposed control algorithm. The simulation results showed that the proposed technology can control three-phase four-wire IGBT PWM rectifier in a stable manner and can also reduce the neutral current. The proposed algorithm is a useful tool for controlling the three-phase four-wire IGBT PWM rectifier.

A New Zero-Voltage-Switching Bridgeless PFC, Using an Active Clamp

  • Ramezani, Mehdi;Ghasedian, Ehsan;Madani, Seyed M.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.723-730
    • /
    • 2012
  • This paper presents a new ZVS single phase bridgeless (Power Factor Correction) PFC, using an active clamp to achieve zero-voltage-switching for all main switches and diodes. Since the presented PFC uses a bridgeless rectifier, most of the time, only two semiconductor components are in the main current path, instead of three in conventional single-switch configurations. This property significantly reduces the conduction losses,. Moreover, zero voltage switching removes switching loss of all main switches and diodes. Also, auxiliary switch turns on zero current condition. The presented converter needs just a simple non-isolated gate drive circuitry to drive all switches. The eight stages of each switching period and the design considerations and a control strategy are explained. Finally, the converter operation is verified by simulation and experimental results.

PFC Bridge Converter for Voltage-controlled Adjustable-speed PMBLDCM Drive

  • Singh, Sanjeev;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.215-225
    • /
    • 2011
  • In this paper, a buck DC-DC bridge converter is used as a power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (PMBLDCM) drive. The front end of the PFC converter is a diode bridge rectifier (DBR) fed from single phase AC mains. The PMBLDCM is used to drive the compressor of an air conditioner through a three-phase voltage source inverter (VSI) fed from a variable voltage DC link. The speed of the air conditioner is controlled to conserve energy using a new concept of voltage control at a DC link proportional to the desired speed of the PMBLDC motor. Therefore, VSI operates only as an electronic commutator of the PMBLDCM. The current of the PMBLDCM is controlled by setting the reference voltage at the DC link as a ramp. The proposed PMBLDCM drive with voltage control-based PFC converter was designed and modeled. The performance is simulated in Matlab-Simulink environment for an air conditioner compressor load driven through a 3.75 kW, 1500 rpm PMBLDC motor. To validate the effectiveness of the proposed speed control scheme, the evaluation results demonstrate improved efficiency of the complete drive with the PFC feature in a wide range of speed and input AC voltage.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Novel Three-Phase PWM Voltage-Fed Rectifier with an Auxiliary Resonant Commutated Pole Link

  • Qu, Ke-Qing;Zhao, Jin-Bin
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.678-686
    • /
    • 2014
  • A novel auxiliary resonant commutated pole (ARCP) link for three-phase PWM voltage-fed converter is presented. The ARCP link consists of two auxiliary switches, one resonant inductance, and six diodes, which is simpler than the conventional ARCP designs. Based on the phase and amplitude control, the proposed converter can take a minimum switching times PWM method, which results in reduced losses and a simplified control. In addition, the zero-voltage resonance modes are analyzed. Finally, simulation and experimental results show that the system can realize zero-voltage switching with a unity power factor.