• 제목/요약/키워드: Three-dimensional theory

검색결과 650건 처리시간 0.062초

Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링 (Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory)

  • 채영주
    • 한국의류학회지
    • /
    • 제42권3호
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

원유 및 가스 지하저장시설에서 불연속면을 고려한 수리-역학적 상호작용에 관한 연구 (The Hydro-mechanical Analysis of Jointed Rock Mass Around the Underground Oil ac Gas Storage Cavern)

  • 장현익;이정인
    • 터널과지하공간
    • /
    • 제12권4호
    • /
    • pp.291-303
    • /
    • 2002
  • 본 연구에서는 삼차원 역학적 해석과 수리-역학 상호작용 해석에 동시에 적용할 수 있도록 불연속면자료를 이용하여 삼차원 블록을 만드는 프로그램을 개발하였다. 삼차원 블록의 역학적 해석을 위해 Shi가 개발한 이차원 불연속변형 해석의 이론을 삼차원으로 확장하여 프로그램을 개발하고 실제 블록에 적용하여 변위를 계산하였다 수리해석과 수리-역학적 상호작용 해석을 위해 기존의 이차원 불연속변형 해석의 수리-역학 상호작용 모델링 연구를 삼차원으로 확장하여 삼차원 불연속면을 고려한 수리-역학 상호작용해석을 실시하였다.

The response of a blade row to a three-dimensional turbulent gust

  • ;김대환;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.74-75
    • /
    • 2010
  • Inflow broadband noise is generated when turbulence in the rotor wakes impinges on the downstream stator vanes. In this paper a three-dimensional model is developed to investigate the broadband noise due to turbulence-cascade interaction. In the newly-developed model, we consider the effects of incident turbulent gust component in span-wise direction on the inflow broadband noise. The quasi-three-dimensional theory is deduced based on the tonal analytic theory of Smith (1972) and two-dimensional broadband noise generalization by Cheong et al. (2006; 2009). Extending the modified LINSUB code, quasi-three-dimensional computational results are presented. Finally, we compare these computational results with time-domain results to validate the theory.

  • PDF

삼차원 불연속 변형 해석(DDA)을 이용한 블록거동해석 (Block Deformation Analysis Using Three-dimensional Discontinuous Deformation Analysis(DDA))

  • 장현익;이정인
    • 터널과지하공간
    • /
    • 제12권3호
    • /
    • pp.158-170
    • /
    • 2002
  • Shi가 개발한 불연속 변형 해석은 많은 발전이 있었지만 지금까지의 해석이 모두 평면변형률이나 평면응력을 가정한 이차원으로 이루어진 해석이다. 하지만 불연속면이 기본적으로 삼차원을 형성하므로 이차원으로 해석하는데는 한계가 있다. 삼차원의 불연속면이 안정성에 큰 영향을 미치는 사면, 지하 비축기지 등의 설계에서는 삼차원 해석에 대한 연구가 필요하다. 이에 이 연구에서는 기존 Shi가 개발한 이차원 불연속 변형 해석을 삼차원 불연속 변형 해석의 이론으로 확장하고 프로그램을 개발하여 실제 블록에 적용함으로써 개발된 이론과 프로그램의 타당성을 검증하였다. 개발한 프로그램을 이용하여 일정한 경사를 가진 블록의 미끄러짐과 쐐기의 미끄러짐을 해석하여 이론값과 정확히 일치하는 결과를 얻었다. 삼차원 이론확장과 검증을 바탕으로 향후 보다 많은 숫자의 블록에 적용하면서 해석을 할 것이다.

퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템 (Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory)

  • 이양창;이준성;최윤종;김남용
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

부유식 해양도시의 동적응답특성 (Dynamic Response Characteristics of a Floating Ocean City in Waves)

  • 구자삼;홍석원
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.80-92
    • /
    • 1994
  • The dynamic response characteristics of a floating ocean city are examined for presenting the basic data for the design of huge offshore structures supported by a large number of floating bodies in waves. The numerical approach which is accurate in linear system is based on combination of a three dimensional source distribution method, wave interaction theory and the finite element method of using the space frame element. The hydrodynamic interactions among the floating bodies are taken into account in their exact form within the context of linear potential theory in the motion and structural analysis. The method is applicable to an arbitrary number of three dimensional bodies having any individual body geometries and geometrical arrangement with the restriction that the circumscribed, bottom-mounted. Imaginary vertical cylinder for each body does not contain any part of the other body. The validity of this procedure was verified by comparing with experimental results obtained in the literature.

  • PDF

EXISTENCE OF SIX SOLUTIONS OF THE NONLINEAR SUSPENSION BRIDGE EQUATION WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.1-24
    • /
    • 2008
  • Let $Lu=u_{tt}+u_{xxxx}$ and E be the complete normed space spanned by the eigenfunctions of L. We reveal the existence of six nontrivial solutions of a nonlinear suspension bridge equation $Lu+bu^+=1+{\epsilon}h(x,t)$ in E when the nonlinearity crosses three eigenvalues. It is shown by the critical point theory induced from the limit relative category of the torus with three holes and finite dimensional reduction method.

  • PDF

BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ELLIPTIC JUMPING PROBLEM WITH CROSSING n-EIGENVALUES

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.41-50
    • /
    • 2019
  • This paper is dealt with one-dimensional elliptic jumping problem with nonlinearities crossing n eigenvalues. We get one theorem which shows multiplicity results for solutions of one-dimensional elliptic boundary value problem with jumping nonlinearities. This theorem is that there exist at least two solutions when nonlinearities crossing odd eigenvalues, at least three solutions when nonlinearities crossing even eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the elliptic eigenvalue problem and Leray-Schauder degree theory.

集中荷重을 받는 正方形 平板의 三次元 彈性理論에 의한 應力解析 (An analytical study of stresses in a square flat plate subjected to a concentrated load using the three-dimensional theory of elasticity)

  • 양인영;정태권;이상호
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.323-329
    • /
    • 1989
  • 본 연구에서는 판이론으로서는 해석이 불가능한 집중하중작용점에서 응력을 해석할 목적으로 3차원탄성이론과 변링포텐셜(POTENTIAL) 이론을 이용하여 유근평판의 집중하중작용점에서의 응력을 해석하는 방법을 제안하고저 한다.