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Abstract

This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of
free—form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e.
analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed
for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the
node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing.
The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for
three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are
demonstrated through several mesh generations for three-dimensional complex geometry.
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1. Introduction

The finite element method(FEM) has been widely uti-
lized in simulating various engineering problems such as
structural deformation, thermal conduction, -electro-
magnetics and so on. The main reason for this is its
high capability of dealing with boundary-value problems
in arbitrarily shaped domains. On the other hand, a mesh
used influences computational accuracy as well as time
so significantly that the mesh generation process is as
much important as the FEM analysis itself. Especially, in
such large scale nonlinear FEM analyses that approach
the limitation of computational capability of so-called
supercomputers, it is highly demanded to optimize the
distribution of mesh size under the condition of limited
total degrees of freedom. Thus, the mesh generation
process becomes more and more time-consuming and
heavier tasks.

Loads for pre-processing and post—processing are in-
creasing rapidly in accordance with an increase of scale
and complexity of analysis models to be solved.
Particularly, the mesh generation process, which influen—
ces computational accuracy as efficiency and whose fully
automation is very difficult in three- dimensional cases,
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has become the most critical issue in a whole process of
the FE analyses. In this respect, various researches
[1-13] have been performed on the development of auto-
matic mesh generation techniques. Among mesh gen-—
eration methods, the tree model method[14] can generate
graded meshes and it uses a reasonably small amount of
computer time and storage. However, it is, by nature, not
possible to arbitrarily control the changing rate of mesh
size with respect to location, so that some smaller pro—
jection and notch etc. are sometimes omitted. Also, do-
main decomposition method[15] does not always succeed,
and a designation of such sub—domains is very tedious
for uses in three—dimensional cases. ‘

In recent years, much attention has been paid to fuzzy
knowledge processing techniques [17], which allow com-
puters to treat “ambiguous” matters and processes. In
this paper, we explain an FE mesh generation system
based on fuzzy knowledge processing and computational
geometry techniques. Here, the node density distribution,
which is a kind of a node spacing function, was well
controlled by means of the fuzzy knowledge processing
technique [18], so that even beginners of the FE analy-
ses are able to produce nearly optimum meshes through
very simple operations as if they were experts.

2. Outline of the System

A flow of this system is shown in Fig. 1. Each sub-
process will be described below.
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Geometric modelers are utilized to define geometries of
analysis dornains. One of commercial geometric modelers,
Designbase [18]. In the present system, nodes are first
generated, and then a finite element mesh is built. In
general, it is not so easy to well control element size for
a complex geometry. A node density distribution over a
whole geometry model is constructed as follows. The
present system stores several local nodal patterns such
as the pattern suitable to well capture stress concen-
tration, the pattern to subdivide a finite domain uni-
formly, and the pattern to subdivide a whole domain
uniformly. A user selects some of those local nodal pat—
terns, depending on their analysis purposes, and desig-
nates where to locate them.

Definition of Gearmetry Model
(Using Sdlid Mbddler, Desigrbase)

Attachment of Material Properties
and Boundary Conditions

v

Calaulation of Giobal Node Density Distribuion

'

Node Generation
(Based an Bucketing Method)

Designation of Node

Bement Generation
(Based on Delaunay Method)

Fig. 1. Flow of the present system

2.1 Desigination of node density distribution

In this section, the connecting process of locally-opti-
mumn mesh images is dealt with using the fuzzy knowl-
edge processing technique [17,18].

Performances of automatic mesh generation methods
based on node generation algorithms depend on how to
control node spacing functions or node density dis—
tributions and how to generate nodes. The basic concept
of the present mesh generation algorithm is originated
from the imitation of mesh generation processes by hu-
man experts on FE analyses. One of the aims of this al-
gorithm is to transfer such experts’ techniques to
beginners.

In the present system, nodes are first generated, and
then a finite element mesh is built. In general, it is not
so easy to well control element size for a complex
geometry. A node density distribution over a whole ge-
ometry model is constructed as follows. The present
system stores several local nodal patterns such as the
pattern suitable to well capture stress concentration, the
pattern to subdivide a finite domain uniformly, and the
pattern to subdivide a whole domain uniformly. A user
selects some of those local nodal patterns, depending on
their analysis purposes, and designates where to locate

them.

22 Superposition of Mesh Pattern

In the present method, the field A close to the
crack-tip and the field B close to the hole are defined in
terms of the membership functions used in the fuzzy set
theory as shown in Fig. 2(c).

For the purpose of simplicity, each membership func—
tion is given a function of one-dimension in the figure.
In practice the membership function can be expressed as
u(x, y) in this particular example, and in 3D cases it is a
function of 3D coordinates, ie. B {x, vy, z).

° Nodal pattern I
] Nodal pattern 11

(2)

Membership function
for nodal pattern I

Membership function
for nodal pattern 11

/

Location

|
(b)
|

A | B

(©) § /

(d)

A: Dominant area of
nodal pattern I

B: Dominant area of
nodal pattern I1

Location

Fig. 2. Superposition of node patterns based on
knowledge processing

In Fig. 2(c), the horizontal axis denotes the location,
while the vertical axis does the value of membership
function, which indicates the magnitude of “closeness”’of
the location to each stress concentration field. That is, a
nodal location closer to the stress concentration field
takes a larger value of the membership function. As for
Fig. 2(b), choosing the mesh pattern with a larger value
of the membership function in each location, one can ob-
tain an overlapped curve of both membership functions,
and the domain can be automatically divided into the
following two sub-domains A and B as shown in Fig.
2(c) : the sub-domain close to the crack-tip and that of
the hole. Finally, both node patterns are smoothly con-
nected as shown in Fig. 2(d). This procedure of node
generation, i.e. the connection procedure of both node
patterns, is summarized as follows :



If valxp, ¥o) = Us(Xp, yo) for a node p (xp, Vu)
belonging to the pattern A, then the node p is
generated, and otherwise p is not generated.

If pa(Xq, ¥o) = Us(Xq, Vo) for a node q (xq, ¥o
belonging to the pattern B, then the node q is
generated, and otherwise q is not generated.

It is apparent that the above algorithm can be easily
extended to 3D problems and any number of node
patterns. In addition, since finer node patterns are gen-
erally required to place near stress concentration sources,
it is convenient to let the membership function corre-
spond to node density as well.

2.3 Node Generation

Node generation is one of time consuming processes
in automatic mesh generation. In the present study, the
novel bucketing method [19] is adopted to generate no-
des which satisfy the distribution of node density over a
whole analysis domain. Fig. 3 shows the generated ap-
pearance of nodes for a half of piston head. The distance
of two neighboring candidate nodes is set to be smaller
than the minimum distance of nodes to be generated in
the relevant bucket. Next, candidate nodes are pick up
one by one, starting from the left-bottom corner of the
bucket, and are put into the bucket. A candidate node is
adopted as one of the final nodes when it satisfies the
two criteria [9].

Fig. 3. Generated appearance of nodes

2.4 Element Generation

The Delaunay triangulation method [1,3] is utilized to
generate tetrahedral elements from numerous nodes giv-
en in a geometry.

Let N be a set of nodes, it has the property that the
circumcircle of any triangle in the triangulation contains
no point of N in its interior. The remaining points in N
will be iteratively added to the triangulation. After each
point is added, it will be connected to the vertices of its
enclosing triangle. (See Fig. 4) All internal edges of a
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triangulation of a finite set N are locally optimal if no
point of N is interior to any circumcircle of a triangle.
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Fig. 4. Example showing a Delaunay triangulation

The speed of element generation by the Delaunay tri—
angulation method is proportional to the number of
nodes. If this method is utilized to generate elements in
a geometry with indented shape, elements are inevitably
generated even outside the geometry as shown in Fig. 5.
However, such mis-match elements can be removed by
performing the IN / OUT check for gravity center points
of such elements. In addition, it is necessary to avoid the
generation of those mis—match elements crossing domain
boundary by setting node densities on edges to. be
slightly higher than those inside the domain near the
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boundaries.

2.5 Smoothing Operation

The algorithm of element generation mentioned above
works well in most cases. However, element shapes ob-
tained are sometimes distorted in a superposed region of
several node patterns or near domain boundary. The
smoothing method called “Laplacian operation” is here
applied to remedy such distorted elements as shown in
Fig. 6. In this operation, the location of each node is re-
placed with a mean value of locations of its neighboring
nodes. This operation is iterated several times.

The algorithm of element generation mentioned above
works well in most cases. However, element shapes ob-
tained are sometimes distorted in a superposed region of
several node patterns or near domain boundary. The
smoothing method is here applied to remedy such dis-
torted elements.

Domain boundary

[ ] Node generated

Control node for Delaunay triangulation

Triangles to be generated

Triangles to be removed

Triangles to be removed

Fig. 5. Techniques of avoiding mis—match elements

Nz

Fig. 6. Smoothing operation
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3. Examples and Discussions

The performance of the system is demonstrated
through the mesh generation of several three- dimen-
sional structures. Fig. 7 to 12 show the examples of the
application vof this mesh generator for three-dimensional
geometry. As shown in figures, a uniform mesh and a
nonuniform mesh were connected very smoothly. In case
of a half of piston head as shown in Fig. 7, it took about
40 minutes to define this geometry model by using
Designbase. The mesh consists of 16,430 tetrahedral ele—
ments and 28356 nodes. Nodes and elements are gen-—
erated in about 14 minutes and in about 2 minutes,
respectively.

INCINTZ IS,

F1g 7. Mesh for a half of piston head

To complete this mesh, the following two node pat-
terns are utilized ; (a) the base node pattern in which
nodes are generated with uniform spacing over a whole
analysis domain, (b) a special node pattern for stress
concentration of four corners.

Fig. 8. Mesh for a pressure vessel
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Fig. 9. Mesh for block with bezier loop
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Fig. 11. Mesh for a first~wall

4. Conclusions
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An automatic mesh generation system for three-di-
mensional structures consisting of free-form surfaces
has been presented. Here several local node patterns are
selected and are automatically superposed based on the
fuzzy knowledge processing technique. In addition, sev-—
eral computational geometry techniques were success-
fully applied to node and element generation. The devel-
oped system was utilized to generate meshes of
three-dimensional complex geometries. The key features
of the present algorithm are an easy control of complex
three—dimensional node density distribution with a fewer
input data by means of the fuzzy knowledge processing
technique, and fast node and element generation owing
to some computa— tional geometry techniques. The ef-
fectiveness of the present system is demonstrated
through several mesh generations for three-dimensional
complex geometry.
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