• Title/Summary/Keyword: Three-component reaction

Search Result 117, Processing Time 0.029 seconds

Analysis of Ground Reaction Force with Different Soccer Studs (축구화 스터드의 형태변화에 따른 지면반력 분석)

  • Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.119-128
    • /
    • 2006
  • This study was performed to see ground reaction force with different soccer studs with twelve players in Human Performance Laboratory(University of Calgary). Running speed was $4.0{\pm}0.2m/sec$ in straight running as well as vcut running. By using four different kinds of shoes; three different pairs of soccer shoes and one pair of jogging shoes, I reached a conclusion as following. In case of right and left ground reaction force, on the assumption that the positive magnitude of power is inversion and the negative is eversion, vcut running did not occur any inversion, which in the aspect of kinetic mechanics, thought to be decelerating movement. Because when eversion happens, it arises component force of power on heading direction about 8.6 times more than in the movement of straight running. In case of front and rear ground reaction, on the assumption that the positive magnitude of power is suspension power and the negative is propulsion, vcut movement is thought to be decelerating movement in the aspect of kinetic mechanics. Because on heading direction, this movement occurs component force of power about 1.8 times more suspension and 2.2 more propulsion than in the straight running movement. In case of vertical ground reaction, on the assumption that the first peak is the magnitude of power in impact and the second peak is the magnitude of power in active, we judged that the straight running movement performed more efficiently than the vcut movement in the aspect of kinetic mechanics. On the next study, I suppose that vcut running would make up an interesting subject in the aspect of improving kinetic performance ability.

Highly Selective Synthesis of β-Amino Carbonyl Compounds over ZSM-5-SO3H under Solvent-free Conditions

  • Massah, Ahmad Reza;Kalbasi, Roozbeh Javad;Samah, Neda
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1703-1708
    • /
    • 2011
  • ZSM-5-$SO_3H$ efficiently catalyzed the one-pot three-component Mannich reaction of aldehydes, anilines, and ketones. ${\beta}$-Aminocarbonyl compounds were obtained in reasonable yields and excellent stereoselectivities when the reaction was carried out at room temperature under solvent-free conditions. Simple experimental conditions and product isolation procedure makes this protocol potential for the development of clean and environment-friendly strategy for the synthesis of ${\beta}$-amino-ketones. The catalyst was recovered and reused for subsequent runs.

The Optimum Effect of Long Chain Fatty Monoglyceride from Microemulsion by Lipase Catalyst (마이크로에멀젼에서 리파아제 촉매에 의한 고급지방산 모노글리세리드의 생성에 있어 최적효과)

  • Ro, Yoon-Chan;Nam, Ki-Dae;Kim, Jin-Tak;Jo, Kyung-Haeng
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.209-214
    • /
    • 1994
  • Mono alkyl glycerides have bean obtained in good yield by enzyme catalyst from soybean oil. The reaction was carried out in an oil rich microemulsion formula. Best results were obtained with sodium bis(2-ethyl hexyl) sulfo succinate(AOT), isooctane as hydrocarbon component and buffer of pH 7. The enzyme used was a 1,3-specific lipase which leaves the 2-position intact. However, the 2-monoglyceride formed slowly undergoes long chain acyl migration to 1-mono-glyceride. Optimal reaction time at $35^{\circ}C$ reaction temperature was found to be three hour.

  • PDF

Microwave-Assisted One-Pot Synthesis of Octahydroquinazolinone Derivatives Catalyzed by Thiamine Hydrochloride Under Solvent-free Condition

  • Badadhe, Pravin V.;Chate, Asha V.;Hingane, Dattatraya G.;Mahajan, Pravin S.;Chavhan, Namdev M.;Gill, Charansingh H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.936-939
    • /
    • 2011
  • Thiamine hydrochloride (VB1) has been used as an acid catalyst in organic synthesis. One pot three component Biginelli condensation of dimedone, urea/thiourea and substituted aromatic aldehydes catalyzed by 10 mol % of thiamine hydrochloride (VB1) in solvent free condition under microwave irradiation in good to excellent yields has been investigated. Utilization of microwave irradiation, simple reaction conditions, short reaction time, ease of product isolation, and purification makes this manipulation very interesting from an economic and environmental perspective.

A Convenient One-Pot Biginelli Reaction Catalyzed by Y(OAc)3: An Improved Protocol for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Their Sulfur Analogues

  • Aridoss, Gopalakrishnan;Jeong, Yeon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.863-868
    • /
    • 2010
  • Yttrium(III) acetate hydrate-catalyzed novel synthesis of 3,4-dihydropyrimidin-2(1H)-(thio)one derivatives was achieved through one-pot three-component condensation of diversified aldehydes, $\beta$-ketoesters and urea or N-methylurea or thiourea with a molar ratio of 1:1:1.4. In comparison to the classical Biginelli approach, this catalytic method has the advantages of short reaction time and improved product yield.

Laboratory Experiment: Synthesis and Characterization of 4-Methyl-N-(phenylacetyl)benzenesulfonamide through Cu(I)-Catalysis

  • Jung, Byunghyuck
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.187-190
    • /
    • 2018
  • A three-component coupling reaction of phenylacetylene, p-toluenesulfonyl azide, and water through copper catalysis is described to provide knowledge of spectroscopy and catalytic reactions and to introduce current research topics in organic chemistry for second-year undergraduate students. In the presence of stoichiometric amounts of phenylacetylene, p-toluenesulfonyl azide, and triethylamine, the reaction was performed with 4 mol% CuCl in water as the sole solvent and was completed in 1.5 h. A practical purification method and recrystallization of the crude reaction mixture resulted in the rapid isolation of the desired product with yields of 42~65%. Students characterized 4-methyl-N-(phenylacetyl)benzenesulfonamide by using melting-point determination, infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. This experimental procedure and spectroscopic data analysis will serve as a platform for students to apply classroom knowledge in practical state-of-the-art research.

An Improved Protocol on the Synthesis of Thiazolo[3,2-a]pyrimidine Using Ultrasonic Probe Irradiation

  • Tan, Sian Hui;Chuah, Tse Seng;Chia, Poh Wai
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • An improved protocol on the synthesis of thiazolo[3,2-a]pyrimidine-6-carboxylate derivatives are reported. Previously, the thiazolo[3,2-a]pyrimidine-6-carboxylate derivatives were prepared in a two-step procedure. Under the improved procedure, the thiazolo[3,2-a]pyrimidine-6-carboxylate derivatives was readily prepared in a one-step reaction. This procedure was found to be more efficient than the previous protocol and also compared to the ultrasound bath and conventional heating methods in terms of yield and reaction time.

Very Efficient and Rapid Catalyst-free One-pot Three Component Synthesis of 2,5-Dihydro-5-imino-2-methylfuran-3,4-dicarboxylate Derivatives Under Ultrasound Irradiation

  • Rouhani, Morteza;Ramazani, Ali;Joo, Sang Woo;Hanifehpour, Younes
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4127-4130
    • /
    • 2012
  • We report a fast, efficient, and facile route for the synthesis of 2,5-dihydro-5-imino-2-methylfuran-3,4-dicarboxylate derivatives from the isocyanide, dialkyl acetylenedicarboxylate and acetic anhydride under ultrasound-assisted conditions. Utilization of easy reaction conditions, very high to excellent yields, and short reaction times makes this manipulation potentially very useful.

Photoionization of N,N,N',N'-Tetramethyl-p-phenylenediamine in Polar Solvents

  • Min Yeong Lee;Du Jeon Jang;Minyung Lee;Du-Jeon Jang;Dongho Kim;Sun Sook Lee;Bong Hyun Boo
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.429-433
    • /
    • 1991
  • The photoinduced electron transfer reactions of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in various polar solvents were studied by measuring time-resolved fluorescence. The temperature dependence on the fluorescence decay rate in acetonitrile, methanol, ethanol and buthanol was carried out to obtain the activation energy and Arrehnius factor for the photoinduced electron transfer reaction. It was found that as the dielectric constant of the solvent increases, the activation energy and the reaction rate increase. This implys that the Arrehnius factor is important in controlling the photoinduced electron transfer reaction rate. In water, TMPD exists in three forms (cationic, protonated and neutral forms) due to the high dielectric constant and strong proton donating power of water. The photoinduced electron transfer reaction was found to be very fast (< 50 ps) and also the long liverd component in the fluorescence decay profile attributable to the photoexcited protonated form of TMPD was observed. Probably, the reaction pathway and the reaction coordinate seem to be different depending on the solvents studied here.

Changes of Ground Reaction Forces by the Change of Club Length in Golf Swing (클럽의 길이 변화에 따른 골프 스윙의 지면반력 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2007
  • Proper weight shifting is essential for a successful shot in golf swing and this could be described by means of the ground forces between the feet and ground. It is assumed that the ground forces would different according to the club used because the length and swing weight of each club is different. But, in present, it is not clear what changes are made by the change of clubs and this affect the swing motion. Therefore this study focused on the investigation of the changes of the ground forces and ground reaction forces (GRF) by the change of club length. The subjects were three professional male golfers. Four swings (driver, iron 3, iron 5, and iron 7) for each subject were taken by two high speed video cameras and two AMTI force platforms were used to measure the GRF simultaneously. Kwon GRF 2.0 and Mathcad 13 software were used to post processing the data. Changes of the three major component of GRF (Vertical, lateral, anterior-posterior force) at 10 predefined events were analyzed including the maximum. Major findings of this study were as follows. 1. Vertical forces; - There were no significant changes until the top of backswing. - Maximum was occurred at the club horizontal position in the downswing for both feet. The shorter club produced more maximum forces than longer ones in the left foot, but reverse were true for the right foot. - Maximum forces at impact shows the same patterns. 2. Lateral forces; Maximum was occurred at the club horizontal position for both feet, but there were no lateral forces because the direction of two forces was different. Maximum force pattern by different clubs was same as the vertical component. 3. Anterior-posterior forces; - This component made a counter-clock wise moment about a vertical axis located between two foot until the club vertical position was reached during the backswing, and reverse moment were produced when the club reached horizontal at the downswing. - Also this component made a forward moment about a horizontal axis located in the CG during the fore half of the downswing, and a reverse moment until the club reached vertical at the follow through phase. Maximum was occurred at the club vertical in the downswing for both feet. The longer club produced more maximum forces than shorter ones for both feet.