• Title/Summary/Keyword: Third-order

Search Result 6,134, Processing Time 0.043 seconds

Improved Interpolating Equation for Industrial Platinum Resistance Thermometer (산업용 백금저항온도계를 위한 향상된 내삽식)

  • Yang, In-Seok;Kim, Yong-Gyoo;Gam, Kee-Sool;Lee, Young-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.109-113
    • /
    • 2012
  • We propose an improved interpolating equation to express temperature-resistance characteristics for modern industrial platinum resistance thermometers (PRTs). Callendar-van Dusen equation which has been widely used for platinum resistance thermometer fails to fully describe temperature characteristics of high quality PRTs and leaves systematic residual when the calibration point include temperatures above $300^{\circ}C$. Expanding Callendar-van Dusen to higher-order polynomial drastically improves the uncertainty of the fitting even with reduced degrees of freedom of the fitting. We found that in the fourth-order polynomial fitting, the third-order and fourth-order coefficients have a strong correlation. Using the correlation, we suggest an improved interpolating equation in the form of fourth-order polynomial, but with three fitting parameters. Applying this interpolating equation reduced the uncertainty of the fitting to 32 % of that resulted from the traditional Callendar-van Dusen. This improvement was better than that from a simple third-order polynomial despite that the degrees of the freedom of the fitting was the same.

The Design of PIDA Controller with Pre-Compensator

  • Kang, Shin-Chool;Cho, Yong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.301-306
    • /
    • 2003
  • PID controller is applied mostly to two-order system. In third-order or higher- system, it's impossible to get high response quality because of having more zero point than the number of zero point being in the PID controller. To solve those, Jung & Dorf suggested a new type of PIDA controller and solved problen of a third-order system. But, as the result of getting step response using PIDA controller, rising time is very quickly but wide overshoot is happened. Beside designing PIDA controller with using CDM(Coefficient Diagram Method) suggested by shunji manabe. But, In Performance standard, CDM decreases overshoot to desired but rising time is very slow. Therefore this paper suggest a PD-PIDA controller for low overshoot with PD type Pre-compensator. This paper applied designed PD-PIDA controller to position control of 3-Phase induction motor.

  • PDF

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.93-112
    • /
    • 2018
  • An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.

A High Performance Harmonic Mixer Using a plastic packaged device

  • Kim, Jae-Hyun;Go, Min-Ho;Park, Hyo-Dal;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • In this paper, a third-order harmonic mixer is designed using frequency multiplier theory for the Ka-band. The gate bias voltage is selected by frequency multiplier theory to maximize the third-order harmonic element ofthe fundamental LO frequency in the proposed mixer. The designed mixer has a gate mixer structure composed of a gate terminal input for the fundamental local signal ($f_{LO}$), RF signal (${RF}$) and a drain terminal output for the harmonic frequency ($3f_{LO}-f_{RF}$) respectively. The Ka-band harmonic mixer is designed and fabricated using a commercial GaAs MESFET device with a plastic package. The proposed mixer will provide a solution for the problems found in the high cost, complex circuitry in a conventional Ka-band mixer. The 33.5 GHz harmonic mixer has a -10 dB conversion gain by pumping 11.5 GHz LO with a +5 dBm level.

  • PDF

Design and Analysis of Square Beam Type Piezoelectric Vibrating Gyroscope (압전세라믹을 이용한 사각보형 진동자이로의 설계 및 성능분석)

  • 이정훈;박연규;이종원
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.403-411
    • /
    • 1995
  • Square beam type piezoelectric vibrating gyro is developed for the measurement of angular velocity, which is compact, small in size and mass- producible. It features that three pieces of piezoelectric ceramics and bonded onto one face of equilateral square bar type gyro head. Two of them are used as sentuators which drive the gyro head and measure Coriolis force. The third piece is used for the feedback signal in order to resonate the gyro head and measure Coriolis force. The third piece is used for the feedback signal in order to resonate the gyro head with its fundamental natural frequency. Matching two fundamental natural frequencies in the gyro head with its driving frequency is found critical in the design of vibration gyro. Calibration results show that the vibrating gyro developed has the dynamic characteristics of first-order system within the frequency range of interest, which can be easily compensated by a lead compensator.

  • PDF

LOCAL CONVERGENCE FOR SOME THIRD-ORDER ITERATIVE METHODS UNDER WEAK CONDITIONS

  • Argyros, Ioannis K.;Cho, Yeol Je;George, Santhosh
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.781-793
    • /
    • 2016
  • The solutions of equations are usually found using iterative methods whose convergence order is determined by Taylor expansions. In particular, the local convergence of the method we study in this paper is shown under hypotheses reaching the third derivative of the operator involved. These hypotheses limit the applicability of the method. In our study we show convergence of the method using only the first derivative. This way we expand the applicability of the method. Numerical examples show the applicability of our results in cases earlier results cannot.

A Simulation of I-PDA Controller for Induction Motor

  • Choo, Yeon-Cyu;Kim, Seung-Cheol;Lee, Ihn-Yong;Cho, Yong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1521-1523
    • /
    • 2005
  • PID controller is applied mostly to two-order system. In third-order or higher- system, it's impossible to get high response quality because of having more zero point than the number of zero point being in the PID controller. To solve those, Jung & Dorf suggested a new type of PIDA controller and solved problen of a third-order system.. But, as the result of getting step response using PIDA controller, rising time is very quickly but wide overshoot is happened. Beside designing PIDA controller with using CDM(Coefficient Diagram Method) of Shunji Manabe decreases overshoot to desired but rising time is very slow. Therefore this paper suggest a I-PDA controller for low overshoot and fast responsibility. This paper applied designed PD-PIDA controller to position control of 3-Phase induction motor.

  • PDF

Tensorial Time Scales for Turbulent Gradient Transport of Reynolds Stresses (레이놀즈 응력의 난류구배수송을 위한 텐서시간척도)

  • Cho Choong Won;Kim Kyoungyoun;Sung Hyung Jin;Chung Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.687-695
    • /
    • 2005
  • On the notion that the Reynolds stresses are transported with different time scale depending on the transport direction, the third order velocity correlations are represented by a new turbulent gradient transport model with tonsorial Lagrangian time scale. In order to verify the proposed model, DNS data are first obtained in a turbulent channel flow at Re = 180 and tonsorial Lagrangian time scales are computed. The present model predictions are compared with DNS data and those predicted by the third-order turbulent transport model of Hanjalic and Launder that uses a scalar time scale. The result demonstrates that the Reynolds stresses are indeed transported with different time scale depending on the transport direction.

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.567-578
    • /
    • 2020
  • Based on third-order shear deformation shell theory, the present paper investigates post-buckling properties of eccentrically stiffened metal foam curved shells/panels having initial geometric imperfectness. Metal foam is considered as porous material with uniform and non-uniform models. The single-curve porous shell is subjected to in-plane compressive loads leading to post-critical stability in nonlinear regime. Via an analytical trend and employing Airy stress function, the nonlinear governing equations have been solved for calculating the post-buckling loads of stiffened geometrically imperfect metal foam curved shell. New findings display the emphasis of porosity distributions, geometrical imperfectness, foundation factors, stiffeners and geometrical parameters on post-buckling properties of porous curved shells/panels.