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LOCAL CONVERGENCE FOR SOME THIRD-ORDER

ITERATIVE METHODS UNDER WEAK CONDITIONS

Ioannis K. Argyros, Yeol Je Cho, and Santhosh George

Abstract. The solutions of equations are usually found using iterative
methods whose convergence order is determined by Taylor expansions. In
particular, the local convergence of the method we study in this paper
is shown under hypotheses reaching the third derivative of the operator
involved. These hypotheses limit the applicability of the method. In our
study we show convergence of the method using only the first derivative.
This way we expand the applicability of the method. Numerical examples
show the applicability of our results in cases earlier results cannot.

1. Introduction

Let S = R or C, D be a convex subset of S and F : D ⊆ S → S be
a nonlinear differentiable function. Most solution methods for computing a
solution x∗ of the equation

(1.1) F (x) = 0,

are Newton-like methods. Classical third order methods are very expensive
to implement, since there appears F ′′ at every step. That is why numerous
researchers [3, 4, 5, 6, 8, 18, 20, 22, 27, 28, 29] have used instead multi-point
methods defined by:

(1.2) xn+1 = xn − F (xn)

F ′(zn)
, zn = xn − F (xn)

2F ′(xn)
,

(1.3) xn+1 = xn − F (wn)

F ′(xn)
, wn = xn − F (xn)

F ′(xn)
,

(1.4) xn+1 = xn − 2F (xn)

F ′(xn) + F ′(yn)
, yn = xn − F (xn)

F ′(xn)
,

where x0 is an initial point. The methods (1.2)-(1.4) can be found in Chen
[12], Frontini and Sormani [18], Kanwar et al. [22] and others. These methods
diverge from x∗ if the derivative of the function is either zero or very small
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in the vicinity of the solution. That is why numerous third order iterative
methods have been used. For example in [9, 18, 29], they studied the local
convergence of the two-point method defined by

(1.5) xn+1 = xn − F (xn)

F ′(xn + αyn)
,

where

yn =
F (xn)

F ′(xn)± pF (xn)
,

where α, p ∈ S are constants. Numerous single and multi-point methods have
been given in [2, 7, 22, 27]. The local convergence is based on first, second and
third derivative in the preceding works but only the first derivative appears in
these methods. For example, define a function f on D = [− 1

2
, 5
2
] by

f(x) =

{

x3 ln x2 + x5 − x4, if x 6= 0,
0, if x = 0.

Let x∗ = 1. Then we have

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, clearly, the function f ′′′(x) is not bounded on D. We only suppose Lip-
schitz conditions on the first derivative to overcome the usage of higher order
derivatives.

The rest of the paper is organized as follows: In Sections 2 and 3, we study
the local convergence analysis of the methods (1.4) and (1.5), respectively. The
numerical examples are presented in the concluding Section 4.

2. Local convergence for the method (1.4)

We present the local convergence analysis of the method (1.4) in this section.
Let U(v, ρ), Ū(v, ρ) stand for the open and closed balls in S, respectively, with
center v ∈ S and radius ρ > 0.

It is convenient for the local convergence analysis that follows to define some
functions and parameters. Let L0 > 0 and L > 0 be given parameters with
L0 ≤ L. Define the functions g1, g0 and h0 on the interval [0, 1

L0

) by

g1(t) =
Lt

2(1− L0t)
, g0(t) =

L0

2
(1 + g1(t))t, h0(t) = g0(t)− 1

and the parameter r1 by

r1 =
2

2L0 + L
<

1

L0

.

We have that h0(0) = −1 < 0 and h0(t) −→ +∞ as t −→ 1
L0

−
. It follows from

the intermediate value theorem that function h0 has zeros in the interval (0, 1
L0

).
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Denote by r0 the smallest such zero. Then, we have that g1(r1) = 1, g0(r0) = 1,
0 ≤ g1(t) < 1 for each t ∈ [0, r1) and 0 ≤ g0(t) < 1 for each t ∈ [0, r0).Moreover,
define the functions g2 and h2 on the interval [0, r0) by

g2(t) =
2L(1 + g1(t))t

1− g0(t)

and

h2(t) = 2L(1 + g1(t))t+ g0(t)− 1.

Then we have h2(0) = −1 < 0 and

h2(r0) = 2L(1 + g1(r0))r0 + g0(r0)− 1

= 2L(1 + g1(r0))r0

= 2L
(

1 +
Lr0

1− L0r0

)

r0 > 0.

That is, the function h2 has zeros in the interval (0, r0). Denote by r2 the
smallest such zero. Define the parameter

(2.1) r = min{r1, r2}.
Hence we conclude that

(2.2) 0 ≤ g0(t) < 1,

(2.3) 0 ≤ g1(t) < 1

and

(2.4) 0 ≤ g2(t) < 1

for each t ∈ [0, r).

Next, we present the local convergence analysis of the method (1.4).

Theorem 2.1. Let F : D ⊆ S → S be a differentiable function. Suppose that

there exist x∗ ∈ D, parameters L0 > 0, L > 0 such that, for each x, y ∈ D,

(2.5) F (x∗) = 0, F ′(x∗) 6= 0,

(2.6) |F ′(x∗)−1(F ′(x) − F ′(x∗))| ≤ L0|x− x∗|,

(2.7) |F ′(x∗)−1(F ′(x) − F ′(y))| ≤ L|x− y|
and

(2.8) Ū(x∗, r) ⊆ D,

where r is as defined in (2.1). Then the sequence {xn} generated for x0 ∈
U(x∗, r) − {x∗} by the method (1.4) is well defined, remains in U(x∗, r) for

each n ≥ 0 and converges to x∗. Moreover, the following estimates hold for

each n ≥ 0,

(2.9) |yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r,
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(2.10) |(F ′(xn) + F ′(yn))
−1F ′(x∗)| ≤ 2

1− g0(|xn − x∗|)
and

(2.11) |xn+1 − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗|,
where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2

L0

)

the limit point x∗ is the only solution of the equation F (x) = 0 in Ū(x∗, T )∩D.

Proof. By hypothesis x0 ∈ U(x∗, r)−{x∗}, the definition of r and (2.6), we get

(2.12) |F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1.

It follows from (2.12) and the Banach Lemma on invertible functions [2, 7, 23,
24, 26, 27] that F ′(x0) is invertible and

(2.13) |F ′(x0)
−1F ′(x∗)| ≤ 1

1− L0|x0 − x∗| <
1

1− L0r
.

Hence y0 is well defined by the first sub-step of the method (1.4) for n = 0. We
also have

y0 − x∗

= x0 − x∗ − F ′(x0)
−1F (x0)

= − [F ′(x0)
−1F ′(x∗)](2.14)

×
[

∫ 1

0

F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ
]

.

Using (2.3), (2.7), (2.13), (2.14) and the definition of r, we get

|y0 − x∗|

≤ |F ′(x0)
−1F ′(x∗)|

∣

∣

∣

∫ 1

0

F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ
∣

∣

∣

≤ L|x0 − x∗|2
2(1− L0|x0 − x∗|)

= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.9) for n = 0. Then we show that F ′(x0) + F ′(y0) is invertible.
Indeed, using (2.2), (2.6) and (2.9) (for n = 0), we obtain

|(2F ′(x∗))−1(F ′(x0) + F ′(y0)− 2F ′(x∗))|

≤ 1

2
(|F ′(x∗)−1(F ′(x0)− F ′(x∗))|+ |F ′(x∗)−1(F ′(y0)− F ′(x∗))|)

≤ L0

2
(|x0 − x∗|+ |y0 − x∗|)(2.15)

≤ L0

2
(|x0 − x∗|+ g1(|x0 − x∗|)|x0 − x∗|)

= g0(|x0 − x∗|) < g0(r) < 1.
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It follows that (F ′(x0) + F ′(y0)) is invertible and (2.10) is satisfied for n = 0.
Moreover, x1 is well defined by the last sub-step of the method (1.4) for n = 0.
Then, using the last sub-step of the method (1.4) for n = 0, (2.4), (2.9) and
(2.10), we get in turn

|x1 − x∗|
≤ |(F ′(y0) + F ′(x0))

−1F ′(x∗)||F ′(x∗)−1[(F ′(x0)(x0 − x∗)− F (x0) + F (x∗)

+ F ′(y0)(y0 − x∗)− F (x0) + F ′(x∗)]|

≤
L
2
|x0 − x∗|2 +

∣

∣

∣

∫ 1

0
F ′(x∗)−1[F ′(y0)− F ′(x∗ + θ(x0 − x∗))]dθ(x0 − x∗)

∣

∣

∣

1
2
(1 − g0(|x0 − x∗|))

≤
L
2
|x0 − x∗|2 + L

∫ 1

0
|y0 − x∗ − θ(x0 − x∗)|dθ|x0 − x∗|

1
2
(1− g0(|x0 − x∗|))

≤ L|x0 − x∗|2 + 2L(|y0 − x∗|+ 1
2
|x0 − x∗|)|x0 − x∗|

1− g0(|x0 − x∗|)

≤ 2L|x0 − x∗|2 + 2Lg1(|x0 − x∗|)|x0 − x∗|2
1− g0(|x0 − x∗|)

= g2(|x0 − x∗|)|x0 − x∗| < |x0 − x∗|,
which shows (2.11) for n = 0. By simply replacing x0, y0, x1 by xk, yk, xk+1 in
the preceding estimates, respectively, we arrive at estimate (2.9)–(2.11). Using
the estimate |xk+1 − x∗| ≤ c|xk − x∗| < r, c = g2(r) ∈ [0, 1), we deduce that
xk+1 ∈ U(x∗, r) and limk→∞ xk = x∗.

To show the uniqueness part, let Q =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗))dθ for some

y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (2.6), we have

|F ′(x∗)−1(Q− F ′(x∗))| ≤
∫ 1

0

L0|y∗ + θ(x∗ − y∗)− x∗|dθ

≤
∫ 1

0

(1− θ)|x∗ − y∗|dθ(2.16)

≤ L0

2
T < 1.

It follows from (2.16) and the Banach Lemma on invertible functions that Q
is invertible. Finally, from the identity 0 = F (x∗) − F (y∗) = Q(x∗ − y∗), we
conclude that x∗ = y∗. This completes the proof. �

3. Local convergence of the method (1.5)

As in Section 2, we need to introduce some functions and parameters. Let
L0 > 0, L > 0, M > 0, p ∈ S and α ∈ S with L0 ≤ L. Suppose that

(3.1) max{|1 + α|, L|α|} <
1

M
.
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Define the functions G1, G2, G3 and H1, H2, H3 on the interval [0, 1
L0

) by

G1(t) =
(L
2
+ |p|M)t+ |1 + α|M
1− (L0 + |p|M)t

,

H1(t) =
(L

2
+ L0 + 2|p|M

)

t+ |1 + α|M − 1,

G2(t) = L0G1(t)t,

H2(t) = G2(t)− 1,

G3(t) =
L

2(1− L0t)

[

t+
2M |α|

(1− (L0 + |p|M)t)(1−G2(t))

]

,

H3(t) = G3(t)− 1,

respectively, and the parameter

R0 =
1

L0 + |p|M .

It follows from (3.1) that

H1(0) = |1 + α|M − 1 < 0

and

H1(R0) =
(L

2
+ L0 + 2|p|M

)

R0 + |1 + α|M − 1

=
(L

2
+ |p|M

)

R0 + |1 + α|M > 0

since (L0 + |p|M)R0 − 1 = 0 by the definition of R0. It follows from the Inter-
mediate Value Theorem that the function H1 has zeros in the interval (0, R0).
Denote by R1 the smallest such zero. We also get

H1(r1) =
(L

2
+ L0

)

r1 − 1 + |1 + α|M + 2|p|Mr1

= 2|p|Mr1 + |1 + α|M > 0

since (L
2
+ L0)r1 − 1 = 0 by the definition of r1, so

R1 < r1.

Moreover, using the definition of the functions G2 and H2, we have H2(0) =
−1 < 0 and H2(t) → ∞ as t → R−

0 . Hence the function H2 has zeros in the
interval (0, R0). Denote by R2 the smallest such zero. We also get

H2(R1) = L0G1(R1)R1 − 1 = L0R1 − 1 < 0

since L0R1 < L0R0 = L0

L0+|p|M ≤ 1 by the definition of R1, R0 and, since

G1(R1) = 1, we have
R1 < R2.

Furthermore, it follows from (3.1) that

H3(0) = ML|α| − 1 < 0
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and H3(t) → +∞ as t → R−
0 . It follows that the function H3 has zeros in the

interval (0, R0). Denote by R3 the smallest such zero. Set

(3.2) R = min{R1, R3}.
Notice that

(3.3) 0 < R < R0 <
1

L0

.

We also have

(3.4) 0 ≤ G1(t) < 1,

(3.5) 0 ≤ G2(t) < 1

and

(3.6) 0 ≤ G3(t) < 1

for each t ∈ [0, R).

Next, using the preceding notation, we present the local convergence analysis
of the method (1.5).

Theorem 3.1. Let F : D ⊆ S → S be a differentiable function. Suppose that

there exist x∗ ∈ D, parameters L0 > 0, L > 0,M > 0, p ∈ S, α ∈ S such that,

for each x, y ∈ D, the conditions (2.5)–(2.7) hold,

max{|1 + α|, L|α|} <
1

M
,

(3.7) |F ′(x∗)−1F ′(x)| ≤ M

and

(3.8) Ū(x∗, R) ⊆ D,

where R is defined by (3.2). Then the sequence {xn} generated for x0 ∈
U(x∗, R) − {x∗} by the method (1.5) is well defined, remains in U(x∗, R) for

each n ≥ 0 and converges to x∗. Moreover, the following estimates hold, for

each n ≥ 0,

(3.9) |(F ′(xn) + pF ′(xn))
−1F ′(x∗)| ≤ 1

1− (L0 + |p|M)|xn − x∗| ,

(3.10) |αyn + xn − x∗| ≤ G1(|xn − x∗|)|xn − x∗| < |xn − x∗| < R,

(3.11) |F ′(xn + αyn)
−1F ′(x∗)| ≤ 1

1−G2(|xn − x∗|)
and

(3.12) |xn+1 − x∗| ≤ G3(|xn − x∗|)|xn − x∗| < |xn − x∗|,
where the “G” functions are defined above Theorem 3.1. Furthermore, for

T ∈ [R, 2
L0

) the limit point x∗ is the only solution of the equation F (x) = 0 in

Ū(x∗, T ) ∩D.
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Proof. As in Theorem 2.1, it follows that F ′(x0)
−1 exists and

(3.13) |F ′(x0)
−1F ′(x∗)| ≤ 1

1− L0|x0 − x∗| <
1

1− L0R
.

We shall show that F ′(x0) ± pF ′(x0) is invertible. Using the definition of
R0, R (2.6) and (3.7), the identity

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

and the estimate

(3.14) |F ′(x∗)−1F (x0)| ≤ M |x0 − x∗|,
we get in turn

|(F ′(x∗ ± pF (x∗))−1(F ′(x0)± pF (x0)− (F ′(x∗)± pF ′(x∗)))|
= |F ′(x∗)−1((F ′(x0)− F ′(x∗))± p(F (x0)− F (x∗)))|
≤ |F ′(x∗)−1(F ′(x0)− F ′(x∗))|(3.15)

+ |p|
∣

∣

∣
F ′(x∗)−1

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ
∣

∣

∣

≤ (L0 + |p|M)|x0 − x∗| < (L0 + |p|M)R0 < 1.

It follows from (3.15) and the Banach Lemma on invertible functions that
F ′(x0)±pF (x0) is invertible and (3.9) holds for n = 0. Hence y0 is well defined
by the first sub-step of the method (1.5) for n = 0.

Next, we show that αy0 + x0 ∈ U(x∗, R). We have in turn

αy0 + x0 − x∗ =
αF (x0)

F ′(x0)± pF (x0)
+ x0 − x∗

=
−[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]

F ′(x0)± pF (x0)
(3.16)

+
(1 + α)F (x0)± pF (x0)(x0 − x∗)

F ′(x0)± pF (x0)
.

Then, using (2.6), (3.9) (for n = 0), (3.14), (3.2) and (3.4), we have

|αy0 + x0 − x∗|
≤ |(F ′(x0)± pF (x0))

−1F ′(x∗)|

×
[
∣

∣

∣

∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ
∣

∣

∣

+ |1 + α|
∣

∣

∣

∫ 1

0

F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))dθ
∣

∣

∣

+ |p|
∣

∣

∣

∫ 1

0

F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))dθ
∣

∣

∣

]

(3.17)
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≤ (L
2
+ |p|M)|x0 − x∗|+ |1 + α|M)|x0 − x∗|

1− (L0 + |p|M)|x0 − x∗|
= G1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < R,

which shows (3.10) for n = 0 and αy0 + x0 ∈ U(x∗, R). Also, it follows from
(3.2), (3.5), (2.6) and (3.17) that

|F ′(x∗)−1[F ′(x0 + αy0)− F ′(x∗)]| ≤ L0|x0 + αy0 − x∗|
≤ L0G1(|x0 − x∗|)|x0 − x∗|
= G2(|x0 − x∗|)(3.18)

< G2(R) < 1.

It follows from (3.18) and the Banach Lemma on invertible functions that
F ′(x0 + αy0) is invertible and

(3.19) |F ′(x0 + αy0)
−1F ′(x∗)| ≤ 1

1−G2(|x0 − x∗|) ,

which shows (3.11) for n = 0. Hence x1 is well defined by the second sub-step
of the method (1.5) for n = 0. Using the second sub-step of the method (1.5)
for n = 0, we have the approximation

x1 − x∗

= [x0 − x∗ − F ′(x0)
−1F (x0)] + F ′(x0)

−1F ′(x∗)[F ′(x0 + αy0)− F ′(x0)]

× [F ′(x0 + αy0)
−1F ′(x∗)][F ′(x∗)−1F ′(x∗)].(3.20)

Then, in view of (3.20), (3.2), (3.3), (2.7), we obtain in turn

|x1 − x∗|

≤ L|x0 − x∗|2
2(1− L0|x0 − x∗|)
+ |F ′(x0)

−1F ′(x∗)||F ′(x∗)−1[F ′(x0 + αy0)− F ′(x0)]|
× |F ′(x0 + αy0)

−1F ′(x∗)||F ′(x∗)−1F ′(x∗)|

≤ L|x0 − x∗|2
2(1− L0|x0 − x∗|)

+
ML|α||x0 − x∗|

(1− L0|x0 − x∗|)(1− (L0 + |p|M)|x0 − x∗|)(1 −G2(|x0 − x∗|))
= G3(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < R,

which shows (3.12) for n = 0. By simply replacing x0, y0, x1 by xk, yk, xk+1 in
the preceding estimates, respectively, we arrive at estimate (3.9)–(3.12). Using
the estimate |xk+1 − x∗| < |xk − x∗| < R, we deduce that xk+1 ∈ U(x∗, R) and
limk→∞ xk = x∗. The uniqueness part is given in Theorem 2.1 with R replacing
r. This completes the proof. �
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Remark 3.2. (1) In view of (2.6) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + L0‖x− x∗‖,

the condition (3.7) can be dropped and M can be replaced by

M(t) = 1 + L0t

or simply by M = 2, since t ∈ [0, 1
L0

).

(2) The results obtained here can be used for operators F satisfying the
autonomous differential equations [7] of the form

F ′(x) = P (F (x)),

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0), we
can apply the results without actually knowing x∗. For example, let F (x) =
ex − 1. Then we can choose: P (x) = x+ 1.

(3) The local results obtained here can be used for projection methods such
as Arnoldi’s method, the generalized minimum residual method (GMRES), the
generalized conjugate method (GCR) for the combined Newton/finite projec-
tion methods and in connection to the mesh independence principle can be
used to develop the cheapest and most efficient mesh refinement strategies (see
[2, 7, 24, 27]).

(4) The radius r1 given by (2.1) was shown by us to be the convergence
radius of Newton’s method [7, 8]

(3.21) xn+1 = xn − F ′(xn)
−1F (xn)

for each n ≥ 0, under the conditions (2.6) and (2.7). It follows from (2.1) and
r < r1 that the convergence radius r of the method (1.4) cannot be larger than
the convergence radius r1 of the second order Newton’s method (3.21). As
already noted in [2, 7], r1 is at least as large as the convergence ball given by
Rheinboldt [26]

(3.22) rR =
2

3L
.

In particular, for L0 < L, we have

rR < r1

and
rR
r1

→ 1

3

as L0

L
→ 0. That is, our convergence ball r1 is at most three times larger than

Rheinboldt’s. The same value for rR was given by Traub [27].
(5) It is worth noticing that the method (1.4) is not changing when we

use the conditions of Theorem 2.1 instead of the stronger conditions used in
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[1], [9]-[25], [27]-[30]. Moreover, we can compute the computational order of
convergence (COC) defined by

ξ = ln
( |xn+1 − x∗|

|xn − x∗|
)/

ln
( |xn − x∗|
|xn−1 − x∗|

)

or the approximate computational order of convergence

ξ1 = ln
( |xn+1 − xn|
|xn − xn−1|

)/

ln
( |xn − xn−1|
|xn−1 − xn−2|

)

.

This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates using estimates higher than the first Fréchet
derivative of operator F.

4. Numerical examples

Now, we present two numerical examples in this section.

Example 4.1. Returning back to the motivational example at the introduc-
tion of this study, we have L0 = L = 146.6629073, M = 101.5578008, α =
−0.9902, p = 1. The parameters are given in Table 1.

Table 1

the method (1.4) the method (1.5)
r0=0.0068 R0=0.0040
r1=0.0045 R1=7.0847e-18
r2=3.6990e-05 R3=0.0030
r = r2 R=7.0847e-18
ξ1=2.8072 ξ1=1.9966
ξ = 2.9827 ξ = 2.0125

Example 4.2. Let D = [−1, 1]. Define a function f of D by

(4.1) f(x) = ex − 1.

Using (4.1) and x∗ = 0, we get L0 = e−1 < L = M = e, α = −0.8161, p = 1.

Table 2

the method (1.4) the method (1.5)
r0=0.5820 R0=0.2254
r1=0.3249 R1=0.0587
r2=0.0973 R3=0.0737
r = r2 R=0.0587
ξ1=2.4782 ξ1=1.7317
ξ = 2.6654 ξ = 2.0064

The parameters are given in Table 2.
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