Browse > Article
http://dx.doi.org/10.4134/JKMS.j150244

LOCAL CONVERGENCE FOR SOME THIRD-ORDER ITERATIVE METHODS UNDER WEAK CONDITIONS  

Argyros, Ioannis K. (Department of Mathematical Sciences Cameron University)
Cho, Yeol Je (Department of Mathematics Education and the RINS Gyeongsang National University, Department of Mathematics King Abdulaziz University)
George, Santhosh (Department of Mathematical and Computational Sciences NIT)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.4, 2016 , pp. 781-793 More about this Journal
Abstract
The solutions of equations are usually found using iterative methods whose convergence order is determined by Taylor expansions. In particular, the local convergence of the method we study in this paper is shown under hypotheses reaching the third derivative of the operator involved. These hypotheses limit the applicability of the method. In our study we show convergence of the method using only the first derivative. This way we expand the applicability of the method. Numerical examples show the applicability of our results in cases earlier results cannot.
Keywords
Newton method; order of convergence; local convergence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Amat, M. A. Hernandez, and N. Romero, A modified Chebyshev's iterative method with at least sixth order of convergence, Appl. Math. Comput. 206 (2008), no. 1, 164-174.   DOI
2 I. K. Argyros, Convergence and Application of Newton-type Iterations, Springer, 2008.
3 I. K. Argyros, Y. J. Cho, and S. George, On the "Terra incognita" for the Newton-Kantrovich method, J. Korean Math. Soc. 51 (2014), no. 2, 251-266.   DOI
4 I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Methods for Equations and its Applications, Taylor & Francis, CRC Press, New York, 2012.
5 I. K. Argyros, Y. J. Cho, and S. K. Khattri, On a new semilocal convergence analysis for the Jarratt method, J. Inequal. Appl. 2013 (2013), 194, 16 pp.   DOI
6 I. K. Argyros, Y. J. Cho, and H. M. Ren, Convergence of Halley's method for operators with the bounded second derivative in Banach spaces, J. Inequal. Appl. 2013 (2013), 260, 12 pp.   DOI
7 I. K. Argyros and S. Hilout, Computational methods in nonlinear Analysis, World Scientific Publ. House, New Jersey, USA, 2013.
8 V. Candela and A. Marquina, Recurrence relations for rational cubic methods I: The Halley method, Computing 44 (1990), no. 2, 169-184.   DOI
9 J. Chen, Some new iterative methods with three-order convergence, Appl. Math. Comput. 181 (2006), no. 2, 1519-1522.   DOI
10 A. Cordero and J. Torregrosa, Variants of Newton's method using fifth order quadrature formulas, Appl. Math. Comput. 190 (2007), no. 1, 686-698.   DOI
11 J. A. Ezquerro and M. A. Hernandez, A uniparametric Halley-type iteration with free second derivative, Internat. Int. J. Pure Appl. Math. 6 (2003), no. 1, 103-114.
12 J. A. Ezquerro and M. A. Hernandez, On the R-order of the Halley method, J. Math. Anal. Appl. 303 (2005), no. 2, 591-601.   DOI
13 J. A. Ezquerro and M. A. Hernandez, New iterations of R-order four with reduced computational cost, BIT 49 (2009), no. 2, 325-342.   DOI
14 M. Frontini and E. Sormani, Some variants of Newton's method with third order con-vergence, Appl. Math. Comput. 140 (2003), no. 2-3, 419-426.   DOI
15 J. M. Gutierrez and M. A. Hernandez, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998), no. 7, 1-8.
16 J. Kou and Y. Li, An improvement of the Jarratt method, Appl. Math. Comput. 189 (2007), no. 2, 1816-1821.   DOI
17 M. A. Hernandez, Chebyshev's approximation algorithms and applications, Comput. Math. Appl. 41 (2001), no. 3-4, 433-455.   DOI
18 M. A. Hernandez and M. A. Salanova, Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces, Southwest J. Pure Appl. Math. 1 (1999), no. 1, 29-40.
19 M. V. Kanwar, V. K. Kukreja, and S. Singh, On some third-order iterative methods for solving nonlinear equations, Appl. Math. Comput. 171 (2005), no. 1, 272-280.   DOI
20 A. Y. Ozban, Some new variants of Newton's method, Appl. Math. Lett. 17 (2004), no. 6, 677-682.   DOI
21 S. K. Parhi and D. K. Gupta, Semilocal convergence of a Stirling-like method in Banach spaces, Int. J. Comput. Methods 7 (2010), no. 2, 215-228.   DOI
22 M. S. Petkovic, B. Neta, L. Petkovic, and J. Dzunic, Multipoint methods for solving nonlinear equations, Elsevier, 2013.
23 F. A. Potra and V. Ptak, Nondiscrete induction and iterative processes, Research Notes in Mathematics, Vol. 103, Pitman Publ., Boston, MA, 1984.
24 L. B. Rall, Computational solution of nonlinear operator equations, Robert E. Krieger, New York, 1979.
25 H. Ren, Q.Wu, and W. Bi, New variants of Jarratt method with sixth-order convergence, Numer. Algorithms 52 (2009), no. 4, 585-603.   DOI
26 X. Xiao and H. Yin, A new class of methods with higher order of convergence for solving systems of nonlinear equations, (submitted for publication).
27 W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, In: Mathematical models and numerical methods (Papers, Fifth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1975), pp. 129-142, Banach Center Publ., 3, PWN, Warsaw, 1978.
28 J. F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall Englewood Cliffs, New Jersey, USA, 1964.
29 S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87-93.   DOI
30 X. Wang and J. Kou, Convergence for modified Halley-like methods with less computa-tion of inversion, J. Difference Equ. Appl. 19 (2013), no. 9, 1483-1500.   DOI