• 제목/요약/키워드: Thin layer

검색결과 5,292건 처리시간 0.028초

수성 폴리머 도료를 이용한 초음파 스프레이 공정으로 형성된 폴리머 절연층 미세구조 특성 (Morphology Characteristics of Insulating Laser based on Aqueous Polymer Resin Fabricated by Ultrasonic Spray Coating Process)

  • 유정모;박채원;엄현진
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.136-136
    • /
    • 2016
  • Commonly used oil-based polymer resin has environmental and safety issues. Many researches for replacing the harmful solvent-borne resins to water-borne resins have been investigated to purify harmful environmental resources and follow the export and import of hazardous materials regulations. In this research, ultrasonic spray coatings of aqueous polymer resin were studied to fabricate thin insulating layer (${\sim}{\mu}m$) on the rectangular copper wire. It needs to have appropriate wettability between resin and substrate during the ultrasonic spray coating process to coat aqueous polymer uniformly. Furthermore, stabilities of coating solution and fabricating process are required to form thin insulating layer on the substrate. In here, physical characteristics such as viscosity of 6 types of commercial polymer dispersions and emersions were analyzed to confirm compatibility for ultrasonic spray coating process. These resins were dissolved in isopropyl alcohol, used for true solvent, and were diluted with ethanol, utilized for diluent. Also, solubilities, dispersion characteristics, and viscosities of these diluted polymer resin solutions were confirmed. Dispersion characteristic and viscosity of coating solution affects jetting of ultrasonic spray coating and these jetting characteristics influence morphologies of insulating layer. In conclusion, we have known that aqueous polymer solution should have outstanding dispersion characteristic and certain range of viscosity to fabricate thin polymer insulating layer uniformly with ultrasonic spray coating.

  • PDF

Magnetic Properties of Multiferroic $BiFeO_3/BaTiO_3$ Bi-layer Thin Films

  • Yang, P.;Byun, S.H.;Kim, K.M.;Lee, Y.H.;Lee, J.Y.;Zhu, J.S.;Lee, H.Y.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.318-319
    • /
    • 2008
  • In this article, magnetic properties of multiferroic bi-layer $BiFeO_3$ (BFO)/$BaTiO_3$ (BTO) thin films were studied. It was found that the magnetization increased by the insertion of BTO buffer layer even though the interfacial stress was slightly relaxed, which indicated a coupling between the ferroelectric and ferromagnetic orders. Furthermore, with slightly increase of BFO film thickness, both BFO and BFO/BTO bi-layer films showed anisotropic magnetic properties with higher in-plane magnetization than the values measured out-of-plane. These are attributable to strain constraint effect at the interface.

  • PDF

Buffer layer 를 이용한 저온 $\muC-Si/CaF_2$/glass 박막성장연구 (The Study of Low Temperature $\muC-Si/CaF_2$/glass Film Growth using Buffer layer)

  • 김도영;안병재;임동건;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.589-592
    • /
    • 1999
  • This paper describes direct $\mu$C-Si/CaF$_2$/glass thin film growth by RPCVD system in a low temperature for thin film transistor (TFT), photovoltaic devices. and sensor applications. Experimental factors in a low temperature direct $\mu$ c-Si film growth are presented in terms of deposition parameters: SiH$_4$/H$_2$ ratio, chamber total pressure, substrate temperature, rf power, and CaF$_2$ buffer layer. The structural and electrical properties of the deposited films were studied by means of Raman spectroscopy, I-V, L-I-V, X-ray diffraction analysis and SEM. we obtain a crystalline volume fraction of 61%, preferential growth of (111) and (220) direction, and photosensitivity of 124. We achieved the improvement of crystallinity and electrical property by using the buffer layers of CaF$_2$ film.

  • PDF

경사증착법을 이용한 PM-OLED용 무기박막형 보호층 연구 (Study on the MgO Passivated PM-OLED using the Tilt & Rotate Technique)

  • 김광호;김훈;김재경;도이미;한정인;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.812-815
    • /
    • 2003
  • In this study, the MgO thin-film passivation layer was adopted to protect passive matrix organic light emitting diode(PMOLED) with the cathode separator from moisture and oxygen. Using the substrate rotate and tilt technique during the deposition, the organic and cathode layers were perfectly covered with MgO. And then, we analyzed the difference of the current-voltage and luminescence characteristics between passivated OLED of the MgO and non-passivated OLED. It was found that the number of dark spot generated from the degradated pixel was decreased owing to the Mgo thin-film passivation layer using the tilt & rotate technique. And the half-life time passivated OLED was improved two times more. Thus, the MgO could be vaccum-deposited under the low temperature and had a merit that the organic layer was not much affected. We can consider that MgO thin film passivation method can be adopted to protect the OLED from moisture and oxygen and can offer the enhancement of lifetime.

스퍼터 증착된 Zinc Tin Oxide 박막 트랜지스터의 공정 압력에 따른 특성 연구 (The Properties of RF Sputtered Zinc Tin Oxide Thin Film Transistors at Different Sputtering Pressure)

  • 이홍우;양봉섭;오승하;김윤장;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제13권1호
    • /
    • pp.43-49
    • /
    • 2014
  • Zinc-tin oxides (ZTO) thin film transistors have been fabricated at different process pressure via re sputtering technique. TFT properties were improved by depositing channel layers at lower pressure. From the analysis of TFTs comprised of multi layer channel, deposited consecutively at different sputtering pressure, it was suggested that the electrical characteristics of TFTs were mainly affected by interfacial layer due to their high conductance, however, the stability under the NBIS condition was influenced by whole bulk layer due to low concentration of positive charges, which might be generated by the oxygen vacancy transition, from Vo0 to $Vo^{2+}$. Those improvements were attributed to increasing sputtered target atoms and decreasing harmful effects of oxygen molecules by adopting low sputtering pressure condition.

전면발광 유기광소자용 박막 봉지를 위한 유도결합형 화학 기상 증착 장치 (Inductively Coupled Plasma Chemical Vapor Deposition System for Thin Film Ppassivation of Top Emitting Organic Light Emitting Diodes)

  • 김한기
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.538-546
    • /
    • 2006
  • We report on characteristics of specially designed inductively-coupled-plasma chemical vapor deposition (ICP-CVD) system for top-emitting organic light emitting diodes (TOLEDs). Using high-density plasma on the order of $10^{11}$ electrons/$cm^3$ generated by linear-type antennas connected in parallel and specially designed substrate cooling system, a 100 nm-thick transparent $SiN_{x}$ passivation layer was deposited on thin Mg-Ag cathode layer at substrate temperature below $50\;^{\circ}C$ without a noticeable plasma damage. In addition, substrate-mask chucking system equipped with a mechanical mask aligner enabled us to pattern the $SiN_x$ passivation layer without conventional lithography processes. Even at low substrate temperature, a $SiN_x$ passivation layer prepared by ICP-CVD shows a good moisture resistance and transparency of $5{\times}10^{-3}g/m^2/day$ and 92 %, respectively. This indicates that the ICP-CVD system is a promising methode to substitute conventional plasma enhanced CVD (PECVD) in thin film passivation process.

MOCVD 방법으로 증착된 TaN와 무전해도금된 Cu박막 계면의 열적 안정성 연구 (Thermal Stability of the Interface between TaN Deposited by MOCVD and Electroless-plated Cu Film)

  • 이은주;황응림;오재응;김정식
    • 한국전기전자재료학회논문지
    • /
    • 제11권12호
    • /
    • pp.1091-1098
    • /
    • 1998
  • Thermal stability of the electroless deposited Cu thin film was investigated. Cu/TaN/Si multilayer was fabricated by electroless-depositing Cu thin layer on TaN diffusion barrier layer which was deposited by MOCVD on the Si substrate, and was annealed in $H_2$ ambient to investigate the microstructure of Cu film with a post heat-treatment. Cu thin film with good adhesion was successfully deposited on the surface of the TaN film by electroless deposition with a proper activation treatment and solution control. Microstructural property of the electroless-deposited Cu layer was improved by a post-annealing in the reduced atmosphere of $H_2$ gas up to $600^{\circ}C$. Thermal stability of Cu/TaN/Si system was maintained up to $600^{\circ}C$ annealing temperature, but the intermediate compounds of Cu-Si were formed above $650^{\circ}C$ because Cu element passed through the TaN layer. On the other hand, thermal stability of the Cu/TaN/Si system in Ar ambient was maintained below $550^{\circ}C$ annealing temperature due to the minimal impurity of $O_2$ in Ar gas.

  • PDF

Vapor Deposition Polymerization(VDP)을 이용한 페시베이션이 유기박막트렌지스터에 주는 영향 (Effects of Organic Passivation Layers by Vapor Deposition Polymerization(VDP) for Organic Thin-Film Transistors(OTFTs))

  • 박일흥;형건우;최학범;김재혁;김우영;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.114-115
    • /
    • 2007
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing, In order to form polymeric film as an passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing, Field effect mobility, threshold voltage, and on-off current ratio with 450-nm-thick organic passivation layer were about $0.21\;cm^2/Vs$, IV, and $1\;{\times}\;10^5$, respectively.

  • PDF

나노 복화공정의 역방향 적층법을 이용한 직접적 나노패턴 생성에 관한 연구 (Directly Nano-precision Feature Patterning on Thin Metal Layer using Top-down Building Approach in nRP Process)

  • 박상후;임태우;양동열;공홍진
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.153-159
    • /
    • 2004
  • In this study, a new process to pattern directly on a thin metal layer using improved nano replication printing (nRP) process is suggested to evaluate the possibilities of fabricating a stamp for nano-imprinting. In the nRP process, any figure can be replicated from a bitmap figure file in the range of several micrometers with nano-scaled details. In the process, liquid-state resins are polymerized by two-photon absorption which is induced by femto-second laser. A thin gold layer was sputtered on a glass plate and then, designed patterns or figures were developed on the gold layer by newly developed top-down building approach. Generally, stamps fur nano-imprinting have been fabricated by using the costly electron-beam lithography process combined with a reactive ion-etching process. Through this study, the effectiveness of the improved nRP process is evaluated to make a stamp with the resolution of around 200nm with reduced cost.

기판온도가 Nb2O5/SiO2 버퍼층위에 증착한 ITO 박막의 광학적 및 전기적 특성에 미치는 영향 (Effect of Substrate Temperature on the Optical and Electrical Properties of ITO Thin Films deposited on Nb2O5/SiO2 Buffer Layer)

  • 정양희;강성준
    • 한국정보통신학회논문지
    • /
    • 제20권5호
    • /
    • pp.986-991
    • /
    • 2016
  • 본 연구에서는 $Nb_2O_5/SiO_2$ 두개의 버퍼층위에 기판온도 (상온~$400^{\circ}C$) 에 따른 ITO 박막을 DC 마그네트론 스퍼터링 법으로 증착하여 전기적 및 광학적 특성을 조사하였다. 기판온도가 상승함에 따라 그레인 크기 증가에 기인한 결정성 향상 때문에 비저항이 낮아지는 경향을 나타내었다. 기판온도 $400^{\circ}C$ 에서 증착한 ITO 박막이 $3.03{\times}10^{-4}{\Omega}{\cdot}cm$ 의 비저항과 $86.6{\Omega}/sq.$의 면저항으로 가장 우수한 값을 나타내었다. 광학적 특성을 측정한 결과, 기판온도가 상승함에 따라 가시광 영역 (400~800nm) 에서의 평균 투과도는 증가하였으며 색도 ($b^*$) 값은 감소하였다. $400^{\circ}C$에서 증착한 ITO 박막의 평균 투과도와 색도 ($b^*$) 는 85.8% 와 2.13 으로 버퍼층이 삽입되지 않은 ITO 박막의 82.8% 와 4.56 에 비해 상당히 향상된 결과를 나타내었다. 이를 통해 $Nb_2O_5/SiO_2$ 두개의 버퍼층을 도입한 ITO 박막은 인덱스 매칭 효과로 인해 투과도 및 색도 ($b^*$) 등의 광학적 특성이 현저히 향상되었음을 확인할 수 있었다.