• Title/Summary/Keyword: Thin layer

Search Result 5,287, Processing Time 0.034 seconds

A Study on Control System of Multi Layer Sputtering Equipment (다층 박막 스퍼터링 장비의 제어시스템에 관한 연구)

  • Lee, Sun-Jong;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.302-308
    • /
    • 2018
  • Multi-Layer Sputtering is aim to develop desired thickness thin film multi-layer with different materials. The multi-layer thin film deposition process occupies a relatively large portion in the process time, because the main reason is that it takes much time to move the substrate to be deposited and to make the chamber into a high vacuum state compared to the process time. Most of semiconductor and display industries sputter a single substance in one chamber and move boards through multi-continuous robots to another chamber to sputter other materials. This will inevitably require multiple chambers, vacuum pumps, and multi-contamination robots within the process facility. To solve these problems, this paper proposes a control system for multi-layer thin film sputtering devices that deposit different materials within a single vacuum chamber and is applied in TFT process. The manufacture and experiment of the control system proved its validity.

Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se (Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화)

  • Lee, Jong-Chul;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.550-555
    • /
    • 2011
  • A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

Improvement of Permeation of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET) (고분자 기판위에 유기 용매를 사용하지 않은 다층 박막 Encapsulation 기술 개발)

  • Kang, Hee-Jin;Han, Jin-Woo;Kim, Jong-Yeon;Moon, Hyun-Chan;Choi, Sung-Ho;Park, Kwang-Bum;Kim, Tae-Ha;Kim, Hwi-Woon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.56-57
    • /
    • 2006
  • In this paper, the inorganic multi-layer thin film encapsulation was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON SiO2 and parylene layer showed the most suitable properties. Under these conditions, the WVTR for PET can be reduced from a level of $0.57\;g/m^2/day$ (bare subtrate) to 1*10-5 g/$m^2$/day after application of a SiON and SiO2 layer. These results indicates that the PET/SiO2/SiON/Parylene barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Effect of Atomic Layer Deposited Al2O3 Thin Films on the Mechanical Properties of Anti-reflective Moth Eye Nanostructured Films (원자층 증착법에 의한 Al2O3 박막 형성에 따른 모스아이 구조 반사방지 필름의 기계적 물성에 미치는 영향)

  • Yun, Eun Young;Lee, Woo-Jae;Jang, Kyung Su;Choi, Hyun-Jin;Choi, Woo-Chang;Kwon, Se Hun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.50-55
    • /
    • 2015
  • $Al_2O_3$ thin films were deposited on the moth eye anti-reflective nanostructured polycarbonate films by atomic layer deposition (ALD) techniques. Without ALD-$Al_2O_3$ thin films, moth eye anti-reflective nanostructured films had a high optical transmittance of 95.47% at a wavelength of 550 nm and a very poor hardness of 0.1381 GPa. With increasing the thickness of $Al_2O_3$ thin films from 5 to 25 nm, the transmittance of moth eye anti-reflective nanostructured films was gradually decreased from 94.94 to 93.12%. On the other hand, the hardness of the films was greatly increased from 0.3498 to 0.7806 GPa with increasing the thickness of $Al_2O_3$ thin films. This result shows that ALD thin films can be applied to improve mechanical properties with an adequate optical transmittance of the conventional moth eye anti-reflection nanostructure films.

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • Lee, Dong-Gwon;Kim, Da-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

Effects of Ta addition in Co-sputtering Process for Ta-doped Indium Tin Oxide Thin Film Transistors

  • Park, Si-Nae;Son, Dae-Ho;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.334-334
    • /
    • 2012
  • Transparent oxide semiconductors have recently attracted much attention as channel layer materials due to advantageous electrical and optical characteristics such as high mobility, high stability, and good transparency. In addition, transparent oxide semiconductor can be fabricated at low temperature with a low production cost and it permits highly uniform devices such as large area displays. A variety of thin film transistors (TFTs) have been studied including ZnO, InZnO, and InGaZnO as the channel layer. Recently, there are many studies for substitution of Ga in InGaZnO TFTs due to their problem, such as stability of devices. In this work, new quaternary compound materials, tantalum-indium-tin oxide (TaInSnO) thin films were fabricated by using co-sputtering and used for the active channel layer in thin film transistors (TFTs). We deposited TaInSnO films in a mixed gas (O2+Ar) atmosphere by co-sputtering from Ta and ITO targets, respectively. The electric characteristics of TaInSnO TFTs and thin films were investigated according to the RF power applied to the $Ta_2O_5$ target. The addition of Ta elements could suppress the formation of oxygen vacancies because of the stronger oxidation tendency of Ta relative to that of In or Sn. Therefore the free carrier density decreased with increasing RF power of $Ta_2O_5$ in TaInSnO thin film. The optimized characteristics of TaInSnO TFT showed an on/off current ratio of $1.4{\times}108$, a threshold voltage of 2.91 V, a field-effect mobility of 2.37 cm2/Vs, and a subthreshold swing of 0.48 V/dec.

  • PDF

Optical Thin Film and Micro Lens Design for Efficiency Improvement of Organic Light Emitting Diode (유기 발광소자의 효율 향상을 위한 광학박막 및 마이크로렌즈 설계)

  • Ki, Hyun-Chul;Kim, Doo-Gun;Kim, Seon-Hoon;Kim, Sang-Gi;Park, A-Reum;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.817-821
    • /
    • 2011
  • We have proposed an optical thin film and micro lens to improve the luminance of organic light emitting device. The first method, optical thin film was calculated refractive index of dielectric layer material that was modulated refractive index of organic material, ITO (indium tin oxide)and glass. The second method, microlens was applied with lenses on the organic device. Optical thin films were designed with Macleod Simulator and Micro Lenses were calculated by FDTD (finite-difference time-domain) solution. The structure of thin film was designed in organic material/ITO/dielectric layer/glass. The lenses size, height and distance were 5 ${\mu}m$, 1 ${\mu}m$, 1 ${\mu}m$, respectively. The material of micro lenses used silicon dioxide. Result, The highest luminance of OLED which applied with microlens was 11,185 $cd/m^2$, when approval voltage was 14.5 V, applied thin film was 5,857 $cd/m^2$. The device efficiency applying microlens increased 3 times than the device which does not apply microlens.

Phase sequence in Codeposition and Solid State Reaction of Co-Si System and Low Temperature Epitaxial Growth of $CoSi_2$ Layer (Co-Si계의 동시증착과 고상반응시 상전이 및 $CoSi_2$ 층의 저온정합성장)

  • 박상욱;심재엽;지응준;최정동;곽준섭;백홍구
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.439-454
    • /
    • 1993
  • The phase sequence of codeposited Co-Si alloy and Co/si multilayer thin film was investigated by differential scanning calormetry(DSC) and X-ray diffraction (XRD) analysis, The phase sequence in codeposition and codeposited amorphous Co-Si alloy thin film were CoSilongrightarrow Co2Si and those in Co/Si multilayer thin film were CoSilongrightarrowCo2Silongrightarrow and CoSilongrightarrowCo2Si longrightarrowCoSilongrightarrowCoSi2 with the atomic concentration ration of Co to Si layer being 2:1 and 1:2 respectively. The observed phase sequence was analyzed by the effectvie heat of formatin . The phase determining factor (PDF) considering structural facotr in addition to the effectvie heat of formation was used to explain the difference in the first crystalline phase between codeposition, codeposited amorphous Co-Si alloy thin film and Co/Si multilayer thin film. The crystallinity of Co-silicide deposited by multitarget bias cosputter deposition (MBCD) wasinvestigated as a funcion of deposition temperature and substrate bias voltage by transmission electron microscopy (TEM) and epitaxial CoSi2 layer was grown at $200^{\circ}C$ . Parameters, Ear, $\alpha$(As), were calculate dto quantitatively explain the low temperature epitaxial grpwth of CoSi2 layer. The phase sequence and crystallinity had a stronger dependence on the substrate bias voltage than on the deposition temperature due to the collisional daxcade mixing, in-situ cleannin g, and increase in the number of nucleation sites by ion bombardment of growing surface.

  • PDF

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.

Electrical and Optical Properties of Solution-Based Sb-Doped SnO2 Transparent Conductive Oxides Using Low-Temperature Process (저온 공정을 이용한 용액 기반 Sb-doped SnO2 투명 전도막의 전기적 및 광학적 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2014
  • Solution-based Sb-doped $SnO_2$ (ATO) transparent conductive oxides using a low-temperature process were fabricated by an electrospray technique followed by spin coating. We demonstrated their structural, chemical, morphological, electrical, and optical properties by means of X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, Hall effect measurement system, and UV-Vis spectrophotometry. In order to investigate optimum electrical and optical properties at low-temperature annealing, we systemically coated two layer, four layer, and six layers of ATO sol-solution using spin-coating on the electrosprayed ATO thin films. The resistivity and optical transmittance of the ATO thin films decreased as the thickness of ATO sol-layer increased. Then, the ATO thin films with two sol-layers exhibited superb figure of merit compared to the other samples. The performance improvement in a low temperature process ($300^{\circ}C$) can be explained by the effect of enhanced carrier concentration due to the improved densification of the ATO thin films causing the optimum sol-layer coating. Therefore, the solution-based ATO thin films prepared at $300^{\circ}C$C exhibited the superb electrical (${\sim}7.25{\times}10^{-3}{\Omega}{\cdot}cm$) and optical transmittance (~83.1 %) performances.