Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.10.550

Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se  

Lee, Jong-Chul (Department of Materials Science and Engineering, KAIST)
Jung, Gwang-Sun (Department of Materials Science and Engineering, KAIST)
Ahn, Byung-Tae (Department of Materials Science and Engineering, KAIST)
Publication Information
Korean Journal of Materials Research / v.21, no.10, 2011 , pp. 550-555 More about this Journal
Abstract
A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.
Keywords
$Cu_2Se$; Cu(In,Ga)$Se_2$; thin-films; selenization;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 R. Klenk, T. Walter, H. W. Schock and D. Cahen, Adv. Mater., 5, 114 (1993).   DOI
2 J. R. Tuttle, M. A. Contreras, A. Tennant, D. Albin and R. Noufi, in Proceedings of the 23rd Photovoltaic Specialists Conference (New York, NY, May, 1993) p. 415.
3 J. S. Park, Z. Dong, S. Kim and J. H. Perepezko, J. Appl. Phys., 87, 3683 (2000).   DOI   ScienceOn
4 S. Jung, S. J. Ahn, J. H. Yun, J. Gwak, D. Kim and K. Yoon, Curr. Appl. Phys., 10, 990 (2010).   DOI   ScienceOn
5 M. S. Kim, R. B. V. Chalapathy, K. H. Yoon, and B. T. Ahn, J. Electrochem. Soc., 157, B154 (2010).   DOI   ScienceOn
6 T. J. Park, D. H. Shin, B. T. Ahn and J. H. Yun, Kor. J. Mater Res., 19(8), 452 (2009) (in Korean).   DOI   ScienceOn
7 A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. -J. Haug, M. Kalin, D. Rudmann and A. N. Tiwari, Prog. Photovoltaics, 12, 93 (2004).   DOI   ScienceOn
8 M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander and M. M. Al-Jassim, J. Appl. Phys., 82, 2896 (1997).   DOI   ScienceOn
9 M. E. Beck, A. Swartzlander-Guest, R. Matson, J. Keane and R. Noufi, Sol. Energ. Mater. Sol. Cell., 64, 135 (2000).   DOI   ScienceOn
10 V. Alberts, Semicond. Sci. Tech., 19, 65 (2004).   DOI   ScienceOn
11 G. S. Jung, Y. M. Shin, Y. H. Cho, J. H. Yun and B. T. Ahn, Kor. J. Mater Res., 20(8), 434 (2010) (in Korean)..   DOI   ScienceOn
12 K. H. Kim, K. H. Yoon, J. H. Yun and B. T. Ahn, Electrochem. Solid State Lett., 9, A382 (2006).   DOI   ScienceOn