DOI QR코드

DOI QR Code

Effect of Atomic Layer Deposited Al2O3 Thin Films on the Mechanical Properties of Anti-reflective Moth Eye Nanostructured Films

원자층 증착법에 의한 Al2O3 박막 형성에 따른 모스아이 구조 반사방지 필름의 기계적 물성에 미치는 영향

  • Yun, Eun Young (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Woo-Jae (School of Materials Science and Engineering, Pusan National University) ;
  • Jang, Kyung Su (Nano Convergence Team, Seo Yeong Co. Ltd.) ;
  • Choi, Hyun-Jin (MEMS/NANO Component Production Center) ;
  • Choi, Woo-Chang (MEMS/NANO Component Production Center) ;
  • Kwon, Se Hun (School of Materials Science and Engineering, Pusan National University)
  • 윤은영 (부산대학교, 재료공학부) ;
  • 이우재 (부산대학교, 재료공학부) ;
  • 장경수 ((주)서영, 나노융합사업팀) ;
  • 최현진 (부산테크노파크, 멤스나노부품생산센터) ;
  • 최우창 (부산테크노파크, 멤스나노부품생산센터) ;
  • 권세훈 (부산대학교, 재료공학부)
  • Received : 2015.03.06
  • Accepted : 2015.04.22
  • Published : 2015.04.30

Abstract

$Al_2O_3$ thin films were deposited on the moth eye anti-reflective nanostructured polycarbonate films by atomic layer deposition (ALD) techniques. Without ALD-$Al_2O_3$ thin films, moth eye anti-reflective nanostructured films had a high optical transmittance of 95.47% at a wavelength of 550 nm and a very poor hardness of 0.1381 GPa. With increasing the thickness of $Al_2O_3$ thin films from 5 to 25 nm, the transmittance of moth eye anti-reflective nanostructured films was gradually decreased from 94.94 to 93.12%. On the other hand, the hardness of the films was greatly increased from 0.3498 to 0.7806 GPa with increasing the thickness of $Al_2O_3$ thin films. This result shows that ALD thin films can be applied to improve mechanical properties with an adequate optical transmittance of the conventional moth eye anti-reflection nanostructure films.

Keywords

References

  1. M. Onodera, H. Matsuda, H Mori, and T. Ito : SID. Int. Symp. Dig. Tec, 25 (1994) 823.
  2. T. Kawamura, H. Kawamura, and K. Kobara : SID. Int. Symp. Dig. Tec, 91 (1991) 49.
  3. L. C. Klein : "Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes", Noyes Publications, New Jersey, (1988) 49.
  4. F. C. Stedile, and B. A. S. De Barros Jr : Thin Solid Films, 170 (1989) 285. https://doi.org/10.1016/0040-6090(89)90734-7
  5. Y. F. Huanng, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen : Nat. Nanotechnol, 2 (2007) 770. https://doi.org/10.1038/nnano.2007.389
  6. B. J. Bae, S. H. Hong, S. U. Kwak, and H. Lee : J. Kor. Inst. Surf. Eng. 42 (2009) 59. https://doi.org/10.5695/JKISE.2009.42.2.059
  7. D. W. Yun, Y. S. Son, J. H. Kyung, H. C. Park, S. H. Lee, and B. I. Kim : KSPE Spring Conference, (2012) 95.
  8. M. Heckele, W. Bacher, and K. Muller : Sens. Actuators. A-Phys, 83 (2000) 130. https://doi.org/10.1016/S0924-4247(00)00296-X
  9. V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen : J. Appl. Phys, 113 (2013) 021301. https://doi.org/10.1063/1.4757907
  10. S. J. Wilson, and M. C. Hutley : J. Mod. Opt, 29 (1982) 993.
  11. S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi : Electron. Mater. Lett, 5 (2009) 39. https://doi.org/10.3365/eml.2009.03.039
  12. Z. Q. Huang : Ph. D. Thesis, National university of Singapore, (2010).
  13. http://www.flexvuefilms.com/pdf/en/TouchScreen.pdf