• Title/Summary/Keyword: Thin film gas sensor

Search Result 221, Processing Time 0.028 seconds

Basic Studies for the Development of the $NO_2$ Gas Sensor Using Functional Organic Ultrathin Film (기능성 유기 초박막을 이용한 $NO_2$ 가스센서 개발을 위한 기초 연구)

  • Sohn, B.C.;Rim, B.O.;Kim, Y.I.;Sohn, T.W.;Shin, D.M.;Ju, J.B.;Chung, G.Y.;Kim, Y.K.;Kang, W.H.;Lee, B.H.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.125-131
    • /
    • 1995
  • Ultra thin films of Tetra-3-hexadecylsulphamoylcopperphthalocyanine(HDSM-CuPc) were formed on various substrates by Langmuir-Blodgett method, where HDSM-CuPc was synthesized by attaching long-chain alkylamine(hexa-decylamine) to CuPc. The reaction product was identified with FT-IR, UV-visible absorption spectroscopies, elemental analysis and thin layer chromatography. The formation of Ultrathin Langmuir-Blodgett(LB) films of HDSM-CuPc was confirmed by FT-IR and UV-visible spectroscopies. A quartz piezoelectric crystal coated with LB films of HDSM-CuPc was examined as a gas sensor for $N0_2$ gas. HDSM-CuPc LB films were transferred to a quartz crystal microbalance(QCM) in the form of Z-type multilayers. Response characteristics of film-coated QCM to $NO_2$ gas concentrations over a range of $100{\sim}600ppm$ have been tested with a thickness of $5{\sim}20$ layers of HDSM-CuPc. Changes in frequency by adsorption of $NO_2$ were increased With the number of LB layers and $NO_2$ concentration, but the response time was slow.

Gas sensing properties of $LaFeO_3$ thin films fabricated by RF magnetron sputtering method (RF Magnetron Sputtering 법으로 제조된 $LaFeO_3$ 박막의 가스감지 특성)

  • Jang, Jae-Young;Ma, Dae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.357-364
    • /
    • 2000
  • The structural, electrical and gas sensing characteristics of $LaFeO_3$ thin films fabricated by r.f. magnetron sputtering method on $Al_2O_3$ substrates were investigated. (121) domonant crystalline plane was observed for the films heat-treated at above $600^{\circ}C$ and gas sensing properties showed p-type semiconductor behaviors. Gas sensing characteristics of the $LaFeO_3$ thin films was studied as a function of film thicknesses and heat treatment temperatures. While the variation of the film thickness showed a little effect on the sensitivity, the heat treatment temperature was critical to the sensitivity. The thin films with thickness of 400 nm heat-treated at $800^{\circ}C$ showed the sensitivity of 400% for 5000ppm CO and 60% for 350ppm $NH_3$ at the working temperature of $300^{\circ}C$.

  • PDF

Chemiresistive Sensor Based on One-Dimensional WO3 Nanostructures as Non-Invasive Disease Monitors

  • Moon, Hi Gyu;Han, Soo Deok;Kim, Chulki;Park, Hyung-Ho;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.291-294
    • /
    • 2014
  • In this study, a chemiresistive sensor based on one-dimensional $WO_3$ nanostructures is presented for application in non-invasive medical diagnostics. $WO_3$ nanostructures were used as an active gas sensing layer and were deposited onto a $SiO_2/Si$substrate using Pt interdigitated electrodes (IDEs). The IDE spacing was $5{\mu}m$ and deposition was performed using RF sputter with glancing angle deposition mode. Pt IDEs fabricated by photolithography and dry etching. In comparison with thin film sensor, sensing performance of nanostructure sensor showed an enhanced response of more than 20 times when exposed to 50 ppm acetone at $400^{\circ}C$. Such a remarkable faster response can pave the way for a new generation of exhaled breath analyzers based on chemiresistive sensors which are less expensive, more reliable, and less complicated to be manufactured. Moreover, presented sensor technology has the potential of being used as a personalized medical diagnostics tool in the near future.

Ammonia Gas Sensing Characteristics of ZnO Based Thin Film Sensor Doped with $MoO_3$ ($MoO_3$를 첨가한 ZnO 박막 센서의 암모니아 가스 검지 특성)

  • Kim, Sung-Woo;Choi, Woo-Chang;Choi, Hyek-Hwan;Lee, Myong-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 1999
  • Ammonia gas sensors were fabricated with ZnO-based thin films grown by RF-magnetron sputtering method. The films which were doped with $MoO_3$ catalysts of various weight percents were grown in different sputtering gases to fabricate the sensors with a high sensitivity, low working temperature and rapid response time. To improve electrical stability, the films were aged in various conditions. The sensors doped with the catalysts and grown in oxygen sputtering gas showed the improvement of sensitivity. These exhibited the increase of surface carrier concentration and electron mobility. The sensor with 0.875wt.% $MoO_3$ catalysts showed the maximum sensitivity of 70 in ammonia gas concentration of 160 ppm at a working temperature of $300^{\circ}C$. The sensor which is aged at $330^{\circ}C$ for 72hrs in oxygen ambient exhibited tourer sensitivity of 57, but more stable properties, excellent linearity.

  • PDF

Sensitivity enhancement of H2 gas sensor using PbS quantum dots (황화납 양자점 감지막을 통해 감도가 개선된 수소센서)

  • Kim, Sae-Wan;Kim, Na-Ri;Kwon, Jin-Beom;Kim, Jae Keon;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

Fabrication of Fluorescent Oxygen Sensor Probe Module Based on Planner Lightwave Circuits using UV Imprint Lithography (UV 임프린트 공정을 이용한 평면 광회로 기반 형광 산소 센서 프로브 모듈 제작)

  • Ahn, Ki Do;Oh, Seung hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.37-41
    • /
    • 2018
  • This paper presents the integrated fluorescent oxygen sensor probe module based on planner lightwave circuits using UV imprint lithography. The oxygen sensor system is consisted of the optical source part, optical detector part and optical sensing probe part to be composed of the planner lightwave circuit and oxygen sensitive thin film layer. Firstly, we optimally designed the planner lightwave circuit with asymmetric $1{\times}2$ beam splitter using beam propagation method. Then, we fabricated the planner lightwave circuits using UV imprint lithography process. This planner lightwave circuits transmitted the optical power with 76% efficiency and the fluorescence signal with 70% efficiency. The oxygen sensitive thin film layer is coated on the end face of planner lightwave circuit. The oxygen sensor system using this sensor probe module with planner lightwave circuit could measure the concentration with 0.3% resolution from 0% to 20% gas range. This optical oxygen sensor probe module make it possible to compact, simple and cheap measurement system.

Hydrogen Gas Sensing Characteristics of ZnO Wire-like Thin Films (나노선 형상의 산화아연 박막의 수소 가스 감지 특성)

  • Nguyen, Le Hung;Ahn, Eun-Seong;Park, Seong-Yong;Jung, Hoon-Chul;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.427-431
    • /
    • 2009
  • ZnO wire-like thin films were synthesized through thermal oxidation of sputtered Zn metal films in dry air. Their nanostructure was confirmed by SEM, revealing a wire-like structure with a width of less than 100 nm and a length of several microns. The gas sensors using ZnO wire-like films were found to exhibit excellent $H_2$ gas sensing properties. In particular, the observed high sensitivity and fast response to $H_2$ gas at a comparatively low temperature of $200^{\circ}C$ would lead to a reduction in the optimal operating temperature of ZnO-based $H_2$ gas sensors. These features, together with the simple synthesis process, demonstrate that ZnO wire-like films are promising for fabrication of low-cost and high-performance $H_2$ gas sensors operable at low temperatures. The relationship between the sensor sensitivity and $H_2$ gas concentration suggests that the adsorbed oxygen species at the surface is $O^-$.

The Hall Measurement and TMA Gas Detection of ZnO-based Thin Film Sensors (ZnO 박막 센서의 TMA 가스 및 Hall 효과 측정)

  • Ryu, Jee-Youl;Park, Sung-Hyun;Choi, Hyek-Hwan;Lee, Myong-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 1997
  • The TMA gas sensors are fabricated with the ZnO-based thin films grown by a RF magnetron sputtering method. We investigate the surface carrier concentration, Hall electron mobility, electrical resistivity and sensitivity according to temperature variation and TMA gas concentration. The ZnO-based thin film sensors prepared by sputtering in oxygen showed higher surface carrier concentration, higher Hall mobility, higher sensitivity, and lower electrical resistivity than sensors prepared by sputtering in argon. The doping ZnO-based thin film sensors showed the same electrical properties in comparison with nondoping sensors. In case of sputtering on the oxygen gaseous atmosphere, the ZnO-based thin film sensors doped with 4.0 wt.% $Al_{2}O_{3}$, 1.0 wt.% $TiO_{2}$, and 0.2 wt.% $V_{2}O_{3}$ showed the highest surface carrier concentration of $5.95{\times}10^{20}cm^{-3}$, Hall electron mobility of $177\;cm^{2}/V{\cdot}s$, lowest electrical resistivity of $0.59{\times}10^{-4}{\Omega}{\cdot}cm$ and highest sensitivity of 12.1(working temperature, $300^{\circ}C$, TMA gas, 8 ppm).

  • PDF