• Title/Summary/Keyword: Thin film coating

Search Result 899, Processing Time 0.027 seconds

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

Solution Processable Symmetric 4-Alkylethynylbenzene End-Capped Anthracene Derivatives

  • Jang, Sang-Hun;Kim, Hyun-Jin;Hwang, Min-Ji;Jeong, Eun-Bin;Yun, Hui-Jun;Lee, Dong-Hoon;Kim, Yun-Hi;Park, Chan-Eon;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.541-548
    • /
    • 2012
  • New candidates composed of anthracene and 4-alkylethynylbenzene end-capped oligomers for OTFTs were synthesized under Sonogashira coupling reaction conditions. All oligomers were characterized by FT-IR, mass, UV-visible, and PL emission spectrum analyses, cyclic voltammetry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H$-NMR, and $^{13}C$-NMR. Investigation of their physical properties showed that the oligomers had high oxidation potential and thermal stability. Thin films of DHPEAnt and DDPEAnt were characterized by spin coating them onto Si/$SiO_2$ to fabricate top-contact OTFTs. The devices prepared using DHPEAnt and DDPEAnt showed hole field-effect mobilities of $4.0{\times}10^{-3}cm^2$/Vs and $2.0{\times}10^{-3}cm^2$/Vs, respectively, for solution-processed OTFTs.

Influence of Deposition Method on Refractive Index of SiO2 and TiO2 Thin Films for Anti-reflective Multilayers

  • Song, Myung-Keun;Yang, Woo-Seok;Kwon, Soon-Woo;Song, Yo-Seung;Cho, Nam-Ihn;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.524-530
    • /
    • 2008
  • Anti-Reflective (AR) thin film coatings of $SiO_2$ (n= 1.48) and $TiO_2$ (n=2.17) were deposited by ion-beam assisted deposition (IBAD) with End-Hall ion source and conventional electron beam (e-beam) evaporation to investigate the effect of deposition method on the refractive indicies (n) of the fIlms. Green-light generation using a GaAs laser diode was achieved via excitation of the second harmonic. The latter resulted from the transmission of the fundamental guided-mode wave of 1064 nm through periodically poled $LiNbO_3$. Large differences in the refractive indicies of each of the layers in the multilayer coating may improve AR performance. IBAD of $SiO_2$ reduced its refractive index from 1.45 to 1.34 at 1064 nm. Conversely, e-beam evaporation of $TiO_2$ increased its refractive index from 1.80 to 2.11. In addition, no fluctuations in absorption at the wavelength of 1064 nm were found. The results suggest that films prepared by different deposition methods can increase the effectiveness of multilayer AR coatings.

Characteristics of Nano-Size Au Fine Particles Doped TiO2 Thin Films by Sol-Gel Method (졸-겔법에 의한 나노크기 Au 미립자 분산 TiO2 박막의 특성)

  • Park, Min-Jung;Koo, Se-Na;Lee, Kyoung-Seok;Mun, Chong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.114-120
    • /
    • 2006
  • Nano-size Au particle doped $TiO_2$ films were prepared with $Ti(OC_3H_7^i)_4$, polyvinylpyrrolidone(PVP), $HAuCl_4$ and $C_3H_7OH$ etc. by sol-gel method. $TiO_2$ gel films were obtained by the dip-coating method on the $SiO_2$ glass substrates, and then heat-treated at $700^{\circ}C$ for 10 min. The thickness of $TiO_2$ films were $0.7\~1.8\;{\mu}m$. It was found that the thickness of films prepared from PVP containing solution was about $2\~8$ times higher values than that of thin films without PVP. The size of Au particles doped in the films were about $350\~750\;nm$. Nano-size Au particle dispersed $TiO_2$ films showed high absorption peak at visible region 450nm, which made them good candidates for non-linear optical materials and photo-catalytic materials. The contact angle of $TiO_2$ film for water was $12.5^{\circ}$, and therefore it is clear that $TiO_2$ films have very high hydrophilic properties and the self-cleaning effects.

Solvent Sensing Properties of Thin Films Based on Zinc phthalocyanine (ZnPc) Compounds (Zinc phthalocyanine(ZnPc)화합물의 이용한 유기용제 센서)

  • Kim D.H.;Kang Y.G.;Kim J.H.;Roh S.C.;Kim H.J.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.26-29
    • /
    • 2005
  • In this paper, the solvent sensing properties of the metallophthalocyanine macrocyclic compounds(ZnPc) have been deposited as thin films by the spin-coated method and evaporated methods onto alumina substrates and quartz substrates. And then the spin-coated materials of Zinc phthalocyanine solutions blended with $N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,\;1-biphenyl-4,4'-diamine\;and/or\; Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene]$ solutions. The influences of the blended metallophthalocyanine macrocyclic compounds on the resistance have been measured and analysed in five different vapour organic compounds.

  • PDF

Effects of Surface Homogeneity on Optical Properties of Sputter-deposited AlTiO Selective Transmitting Layers (스퍼터 증착으로 형성된 AlTiO 선택적 투과막의 표면 균질성에 따른 광학적 특성)

  • Jeong, So-Un;Lim, Jung-Wook;Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Transparent dye-sensitized solar cells have been widely investigated for the application to building integrated photovoltaic system. Thin film Si-based solar cells are emerging as a substitute for the dye-sensitized solar cells because their merits of well-established manufacturing processes. Since the selective transmitting layer transmits visible light and reflects infrared light, the solar cell efficiency increases with the introduction of the selective transmitting layer. In this work, AlTiO thin films were grown as the selective transmitting layer by cost-effective sputter deposition and their transmittances were improved by controlling deposition parameters.

$NO_2$ gas sensing properties of $SnO_2$ thin films dopped with Pd and CNT (Pd 및 CNT 첨가에 따른 $SnO_2$ 박막의 이산화질소 감지특성)

  • Kim, H.K.;Lee, R.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.101-106
    • /
    • 2008
  • The $SnO_2$ thin films doped with Pd and CNT as $NO_2$ gas sensor were prepared by spin coating and then the $NO_2$ gas response of these films were evaluated under $1ppm{\sim}5ppm\;NO_2$ concentration and operating temperature of $200^{\circ}C$. It was found that the sensor resistance was increased with $NO_2$ exposure and $NO_2$ concentration. The 3wt% Pd doped sample showed a sensitivity of 26.5 which was 10 times higher than that of pure $SnO_2$. And also the sensitivity of CNT doped sample increased with CNT content and it had 72 when 0.225 wt% of CNT was added under 5ppm $NO_2$ concentration.

  • PDF

A Study on the Structure and Electrical Properties of CeO$_2$ Thin Film (CeO$_2$ 박막의 구조적, 전기적 특성 연구)

  • 최석원;김성훈;김성훈;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.469-472
    • /
    • 1999
  • CeO$_2$ thin films have used in wide applications such as SOI, buffer layer, antirflection coating, and gate dielectric layer. CeO$_2$takes one of the cubic system of fluorite structure and shows similar lattice constant (a=0.541nm) to silicon (a=0.543nm). We investigated CeO$_2$films as buffer layer material for nonvolatile memory device application of a single transistor. Aiming at the single transistor FRAM device with a gate region configuration of PZT/CeO$_2$ /P-Si , this paper focused on CeO$_2$-Si interface properties. CeO$_2$ films were grown on P-type Si(100) substrates by 13.56MHz RF magnetron sputtering system using a 2 inch Ce metal target. To characterize the CeO$_2$ films, we employed an XRD, AFM, C-V, and I-V for structural, surface morphological, and electrical property investigations, respectively. This paper demonstrates the best lattice mismatch as low as 0.2 % and average surface roughness down to 6.8 $\AA$. MIS structure of CeO$_2$ shows that breakdown electric field of 1.2 MV/cm, dielectric constant around 13.6 at growth temperature of 200 $^{\circ}C$, and interface state densities as low as 1.84$\times$10$^{11}$ cm $^{-1}$ eV$^{-1}$ . We probes the material properties of CeO$_2$ films for a buffer layer of FRAM applications.

  • PDF

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer (반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구)

  • Oh, Kyoung Suk;Park, Ji Won;Chan, Sung Il
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

Hydrogen Gas Sensor Performance of a p-CuO/n-ZnO Thin-film Heterojunction (p-CuO/n-ZnO 이종접합 박막 구조의 수소 가스 특성 평가)

  • Yang, Yijun;Maeng, Bohee;Jung, Dong Geon;Lee, Junyeop;Kim, Yeongsam;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.337-342
    • /
    • 2022
  • Hydrogen (H2) gas is widely preferred for use as a renewable energy source owing to its characteristics such as environmental friendliness and a high energy density. However, H2 can easily reverse or explode due to minor external factors. Therefore, H2 gas monitoring is crucial, especially when the H2 concentration is close to the lower explosive limit. In this study, metal oxide materials and their p-n heterojunctions were synthesized by a hydrothermal-assisted dip-coating method. The synthesized thin films were used as sensing materials for H2 gas. When the H2 concentration was varied, all metal oxide materials exhibited different gas sensitivities. The performance of the metal oxide gas sensor was analyzed to identify parameters that could improve the performance, such as the choice of the metal oxide material, effect of the p-n heterojunctions, and operating temperature conditions of the gas sensor. The experimental results demonstrated that a CuO/ZnO gas sensor with a p-n heterojunction exhibited a high sensitivity and fast response time (134.9% and 8 s, respectively) to 5% H2 gas at an operating temperature of 300℃.