DOI QR코드

DOI QR Code

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer

반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구

  • Oh, Kyoung Suk (New & Renewable Energy Research Center, Korea Electronics Technology Institute) ;
  • Park, Ji Won (New & Renewable Energy Research Center, Korea Electronics Technology Institute) ;
  • Chan, Sung Il (New & Renewable Energy Research Center, Korea Electronics Technology Institute)
  • 오경석 (신새쟁에너지연구센터, 한국전자기술연구원) ;
  • 박지원 (신새쟁에너지연구센터, 한국전자기술연구원) ;
  • 천성일 (신새쟁에너지연구센터, 한국전자기술연구원)
  • Received : 2020.11.20
  • Accepted : 2020.12.05
  • Published : 2020.12.31

Abstract

In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

Keywords

References

  1. Lee, G. O., "RONGISOLAR sets a new world record, breaking the 24% conversion efficiency of single-sided PERC," SOLAR TODAY, (Jan. 19, 2019) from http://www.solartodaymag.com/news/articleView.html?idxno=7906.
  2. Saint-Cast, P., Nagel, H., Wagenmann, D., Schon, J., Schmitt, P., Reichel, C., Glunz, S. W., Hofmann, M., Rentsch, J., Preu, R., "Potential-induced degradation on cell level: The inversion model," 28th European PV Solar Energy Conference and Exhibition, 2013.
  3. Taubitz, C., Schutze, M., Koentopp, M. B., "Towards a kinetic model of potential-induced shunting," 27th European Photovoltaic Solar Energy Conference and Exhibition, 2012.
  4. Kim, H. B., Jung, T. H., Kang, G. H., Chang, H. S., "The Effect of PID Generation by Components of the PV Module," J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 26, pp. 760-765, 2013. https://doi.org/10.4313/JKEM.2013.26.10.760
  5. Ziebarth, B., Mrovec, M., Elsasser, C., Gumbsch, P., "Potentialinduced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon," Journal of Applied Physics, Vol. 116, No. 9, 093510, 2014. https://doi.org/10.1063/1.4894007
  6. V. Naumann, C. Brzuska, M. Werner, S. Grober, and C.Hagendorf, "Investigations on the Formation of Stacking Fault like PID-shunt," Energy Procedia, Vol. 92, pp. 569-575, 2016. https://doi.org/10.1016/j.egypro.2016.07.021
  7. Naumann, V., Laush, D., Hahnel, A., Bauer, J., Breitenstein, O., Graff, A., Werner, M., Swatek, S., Grober, S., Bagdahn, J., Hagendorf, C., "Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cell," Solar Energy Materials and Solar Cells, Vol. 120, pp. 383-389, 2014. https://doi.org/10.1016/j.solmat.2013.06.015
  8. Sporleder, K., Naumann, V., Bauer, J., Richter, S., Hahnel, A., GroBer, S., Turek, M., Hagendorf, C., "Microstructural analysis of local silicon corrosion of bifacial solar cells as root cause of potential-induced degradation at the rear side," Physica Status Solidi, Vol. 216, No. 17, 1900334, 2019. https://doi.org/10.1002/pssa.201900334
  9. Ohno, Y., Morito, H., Kutsukake, K., Yonenaga, I., Yokoi, T., Nakamura, A., Matsunaga, K., "Interaction of sodium atoms with stacking faults in silicon with different Fermi levels," Applied Physics Express, Vol. 11, No. 6, 061303, 2018. https://doi.org/10.7567/apex.11.061303
  10. Naumann, V., Lausch, D., GroBer, S., Werner, M., Swatek, S., Hagendorf, C., Bagdahn, J., "Microstructural analysis of crystal defects leading to Potential-Induced Degradation (PID) of Si solar cells," Energy Procedia, Vol. 33, No. 6, pp. 76-83, 2013. https://doi.org/10.1016/j.egypro.2013.05.042
  11. Bae, S. H., Oh, W. W., Kim, S. M., Kim, Y. D., Park, S. G., Kang, Y. M., Lee, H. S., Kim, D. W., "Potential Induced Degradation (PID) of crystalline silicon solar modules," Korean J. Mater. Res., Vol. 24, No. 6, pp. 326-337, 2014. https://doi.org/10.3740/MRSK.2014.24.6.326
  12. Oh, J., Dauksher, B., Bowden, S., Tamizhmani, G., Hacke, P., D' Amico, J., "Further studies on the effect of SiNx refractive index and emitter sheet resistance on potential-induced degradation," IEEE Journal of Photovoltaics, pp. 437-443, 2017.
  13. Gou, X., Li, X., Zhou, S., Wang, S., Fan, W., Huang, Q., "PID testing method suitable for process control of solar cells mass production," International Journal of Photoenergy, Vol. 2015, 863248, 2015.
  14. Lausch, D., Naumann, V., Breitenstein, O., Bauer, J., Graff, A., Bagdahn, J., Hagendorf, C., "Potential-Induced Degradation (PID): Introduction of a novel test approach and explanation of increased depletion region recombination," IEEE Journal of Photovoltaics, Vol. 4, No. 3, pp. 834-840, 2014. https://doi.org/10.1109/JPHOTOV.2014.2300238
  15. Luo, W., Khoo, Y. S., Hacke, P., Naumann, V., Lausch, D., Harvey, S., Singh, J. P., Chai, J., Wang, Y., Aberle, A., Ramakrishna, S., "Potential-induced degradation in photovoltaic modules: a critical review," Energy & Environmental Science, Vol. 10, No. 1, pp. 43-68, 2016. https://doi.org/10.1039/c6ee02271e
  16. Jiang, C. S., Xiao, C., Moutinho, H. R., Johnston, S., AlJassim, M. M., Yang, X., Chen, Y., Ye, J., "Imaging charge carriers in potential-induced degradation defects of c-Si solar cells by scanning capacitance microscopy," Solar Energy, Vol. 162, pp. 330-335, 2018. https://doi.org/10.1016/j.solener.2017.12.025
  17. Oh, K. S., Bae, S. H., Lee, K. J., Kim, D. H., Chan, S. I., "Mitigation of Potential-Induced Degradation (PID) based on Anti-Reflection Coating (ARC) structures of PERC solar cells," Microelectronics Reliability, Vol. 100, 13462, 2019.
  18. Hacke, P., Terwilliger, K., Smith, R., Glick, S., Pankow, J., Kempe, M., Kurtz, S., Bennett, I., Kloos, M., "System voltage potential-induced degradation mechanisms in PV modules and methods for test," IEEE 37th Photovoltaic Specialists Conference, 2011.
  19. Hacke, P., Smith, R., Terwilliger, K., Glick, S., Jordan, D., Kempe, M., Kurtz, S., "Testing and analysis for lifetime prediction of crystalline silicon PV modules undergoing degradation by system voltage stress," IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 2012.
  20. Yamaguchi, S., Ohdaira, K., "Degradation behavior of crystalline silicon solar cells in a cell-level potential-induced degradation test," Solar Energy, Vol. 155, pp. 739-744, 2017. https://doi.org/10.1016/j.solener.2017.07.009
  21. Jung, D. W., Oh, K. S., Jang, E. J., Chan, S. I., Ryu, S. W., "Thickness Effect of SiOx Layer Inserted between Anti-Reflection Coating and p-n Junction on Potential-Induced Degradation (PID) of PERC Solar Cells," J. Microelectron. Packag Soc., Vol. 26, No. 3, pp. 75-80, 2015.
  22. Spataru, S. V., Sera, D., Hacke, P., kerekes, T., Teodorescu, R., "Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics," Progress in Photovoltaics: Research and Applications, Vol. 24, No. 4, pp. 517-532, 2015. https://doi.org/10.1002/pip.2571
  23. Jeong, S. J., Kim, S. M., Kang, Y. M., Lee, H. S., Kim, D. H., "Use of a transformed diode equation for characterization of the ideality factor and series resistance of crystalline silicon solar cells based on light I-V curves," Korean J. Mater. Res., Vol. 26, No. 8, pp. 422-426, 2016. https://doi.org/10.3740/MRSK.2016.26.8.422