DOI QR코드

DOI QR Code

Hydrogen Gas Sensor Performance of a p-CuO/n-ZnO Thin-film Heterojunction

p-CuO/n-ZnO 이종접합 박막 구조의 수소 가스 특성 평가

  • Yang, Yijun (Advanced mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Maeng, Bohee (Advanced mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Dong Geon (Advanced mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Junyeop (Advanced mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Yeongsam (Advanced mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • An, Hee Kyung (Advanced mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Daewoong (Advanced mechatronics R&D Group, Korea Institute of Industrial Technology)
  • 양이준 (한국생산기술연구원첨단메카트로닉스연구그룹) ;
  • 맹보희 (한국생산기술연구원첨단메카트로닉스연구그룹) ;
  • 정동건 (한국생산기술연구원첨단메카트로닉스연구그룹) ;
  • 이준엽 (한국생산기술연구원첨단메카트로닉스연구그룹) ;
  • 김영삼 (한국생산기술연구원첨단메카트로닉스연구그룹) ;
  • 안희경 (한국생산기술연구원첨단메카트로닉스연구그룹) ;
  • 정대웅 (한국생산기술연구원첨단메카트로닉스연구그룹)
  • Received : 2022.08.28
  • Accepted : 2022.09.15
  • Published : 2022.09.30

Abstract

Hydrogen (H2) gas is widely preferred for use as a renewable energy source owing to its characteristics such as environmental friendliness and a high energy density. However, H2 can easily reverse or explode due to minor external factors. Therefore, H2 gas monitoring is crucial, especially when the H2 concentration is close to the lower explosive limit. In this study, metal oxide materials and their p-n heterojunctions were synthesized by a hydrothermal-assisted dip-coating method. The synthesized thin films were used as sensing materials for H2 gas. When the H2 concentration was varied, all metal oxide materials exhibited different gas sensitivities. The performance of the metal oxide gas sensor was analyzed to identify parameters that could improve the performance, such as the choice of the metal oxide material, effect of the p-n heterojunctions, and operating temperature conditions of the gas sensor. The experimental results demonstrated that a CuO/ZnO gas sensor with a p-n heterojunction exhibited a high sensitivity and fast response time (134.9% and 8 s, respectively) to 5% H2 gas at an operating temperature of 300℃.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기본사업 "산업재해 및 안전사고 방지를 위한 변색성 유해가스 감지 실용화 센서 시스템 개발 (Kitech UI-22-0016)" 지원으로 수행한 연구임. 본 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의지원을받아수행된연구임(2020-DD-UP-0348). 본 연구는 2021년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [S3177927].

References

  1. V. Sebestyen, "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants", Renew. Sust. Energ. Rev., Vol. 151, pp. 111626, 2021. https://doi.org/10.1016/j.rser.2021.111626
  2. S. K. Sahoo, "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review", Renew. Sust. Energ. Rev., Vol. 59, pp. 927-939, 2016. https://doi.org/10.1016/j.rser.2016.01.049
  3. S. D. Han, "Review and new trends of hydrogen gas sensor technologies", J. Sens. Sci. Technol., Vol. 19, No. 2, pp. 67-86, 2010. https://doi.org/10.5369/JSST.2010.19.2.067
  4. I. H. Kadhim, H. A. Hassan, and Q. N. Abdullah, "Hydrogen Gas Sensor Based on Nanocrystalline SnO2 Thin Film Grown on Bare Si Substrates", Nano-Micro Lett., Vol. 8, No. 1, pp. 20-28, 2016. https://doi.org/10.1007/s40820-015-0057-1
  5. Y. S. Kim, "Optimization of metal oxide thin film thickness and annealing conditions for fabricating high-sensitivity hydrogen sensors for hydrogen leakage detection", M.S. thesis, Kyungpook National University, Daegu, 2021.
  6. W. Kang, "Enhanced Hydrogen Gas Sensing Properties of ZnO Nanowires Gas Sensor by Heat Treatment under Oxygen Atmosphere", J. Korean Inst. Surf. Eng., Vol. 50, No.2, pp. 125-130, 2017. https://doi.org/10.5695/JKISE.2017.50.2.125
  7. A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B, Vol. 229, pp. 206-217, 2018. https://doi.org/10.1016/j.mseb.2017.12.036
  8. A. Tricoli, M. Righettoni, and A. Teleki, "Semiconductor Gas Sensors: Dry Synthesis and Application", Angew. Chem. Int. Ed, Vol. 49, No. 42, pp. 7632-7659, 2010. https://doi.org/10.1002/anie.200903801
  9. H. Nazemi, A. Joseph, J. Park, and A. Emadi, "Advanced Micro- and Nano-Gas Sensor Technology: A Review", Sensors, Vol. 19, No. 6, pp. 1285-1307, 2019.
  10. A. Mortezaali and R. Moradi, "The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors", Sens. Actuator A Phys., Vol. 206, No. 1, pp. 30-34, 2014. https://doi.org/10.1016/j.sna.2013.11.027
  11. I. H. Kadhim, H. A. Hassan, and F. T. Ibrahim, "Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures", Int. J. Hydrog. Energy, Vol. 45, No.46, pp. 25599-25607, 2020. https://doi.org/10.1016/j.ijhydene.2020.06.136
  12. Y. Chen, X. Wang, C. Shi, L. Li, H. Qin, and J. Hu, "Sensing mechanism of SnO2(1 1 0) surface to H2: Density functional theory calculations", Sens. Actuators B chem., Vol. 220, No. 1, pp. 279-287, 2015. https://doi.org/10.1016/j.snb.2015.05.061
  13. A. Shanmugasundaram, P. Basak, L. Satyanarayana, and S.V. Manorama, "Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p-n junctions and enhanced H2 sensing", Sens. Actuators B chem., Vol. 185, pp. 265-273, 2013. https://doi.org/10.1016/j.snb.2013.04.097
  14. H. T. Nha, N. V. Duy, C. M. Hung, and N. D. Hoa, "Facile synthesis of Pd-CuO nanoplates with enhanced SO2 and H2 gas-sensing characteristics", J. Electron. Mater., Vol. 50, No.5, pp. 2767-2778, 2021. https://doi.org/10.1007/s11664-021-08799-7
  15. S. H. Sun, G. W. Meng, G. X. Zhang, T. Gao, B. Y. Geng, L. D. Zhang, and J. Zuo, "Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders", Chem. Phys. Lett., Vol. 376, No. 1-2, pp. 103-107, 2003. https://doi.org/10.1016/S0009-2614(03)00965-5
  16. D. Leng, L. Wu, H. Jiang, Y. Zhao, J. Zhang, W. Li, and L. Feng, "Preparation and Properties of SnO2 Film Deposited by Magnetron Sputtering", Int. J. Photoenergy, Vol. 2012, 2012.
  17. Y. Liu, E. Koep, and M. Liu, "A Highly Sensitive and FastResponding SnO2 Sensor Fabricated by Combustion Chemical Vapor Deposition", Chem. Mater., Vol. 17, No. 15, pp. 3997-4000, 2005. https://doi.org/10.1021/cm050451o
  18. B. K. Min, and S. D. Choi, "SnO2 thin film gas sensor fabricated by ion beam deposition", Sens. Actuators B Chem., Vol. 98, No. 2-3, pp. 239-246, 2004. https://doi.org/10.1016/j.snb.2003.10.023
  19. H. Yoo, H. Kim, and D. Kim, "Fabrication and haracterization of CuO Thin Film/ZnO Nanorods Heterojunction Structure for Efficient Detection of NO Gas", Korean J. Mater. Res., Vol. 28, No. 1, pp. 32-37, 2018. https://doi.org/10.3740/MRSK.2018.28.1.32
  20. T. H. Han, S. Y. Bak, S. Kim, S. H. Lee, Y. J. Han, and M. Yi, "Decoration of CuO NWs Gas Sensor with ZnO NPs for Improving NO2 Sensing Characteristics", Sens., Vol. 21, No. 6, pp. 2103, 2021. https://doi.org/10.3390/s21062103
  21. S. Lu, Y. Zhang, J. Liu, H. Y. Li, Z. Hu, X. Luo, N. Gao, B. Zhang, J. Jiang, A. Zhong, J. Luo, and H. Liu, "Sensitive H2 gas sensors based on SnO2 nanowires", Sens. Actuators B Chem, Vol. 345, No. 15, p. 130334, 2021. https://doi.org/10.1016/j.snb.2021.130334
  22. B. Wang, L. Sun, M. Schneider-Ramelow, K. D. Lang, and H. D. Ngo, "Recent advances and challenges of nanomaterials-based hydrogen sensors", Micromachines, Vol. 12, No.11, p. 1429, 2021. https://doi.org/10.3390/mi12111429
  23. Q. Xu, D. Ju, Z. Zhang, S. Yuan, J. Zhang, H. Xu, and B. Cao, "Near room-temperature triethylamine sensor constructed with CuO/ZnO p-n heterostructural nanorods directly on flat electrode", Sens. Actuators B Chem, Vol. 225, No.31, pp. 16-26, 2016. https://doi.org/10.1016/j.snb.2015.10.108
  24. Y. GuO, M. Gong, Y. Li, Y. Liu, and X. Dou, "Sensitive, selective, and fast detection of ppb-lebel H2S gas boosted by ZnO-CnO mesocrystal", Nanoscale Res. Lett., Vol. 11, No. 1, pp. 1-6, 2016. https://doi.org/10.1186/s11671-015-1209-4