• Title/Summary/Keyword: Thickness of interface

Search Result 1,057, Processing Time 0.035 seconds

Analysis of Trap Dependence on Charge Trapping Layer Thickness in SONOS Flash Memory Devices Based on Charge Retention Model (전하보유모델에 기초한 SONOS 플래시 메모리의 전하 저장층 두께에 따른 트랩 분석)

  • Song, Yu-min;Jeong, Junkyo;Sung, Jaeyoung;Lee, Ga-won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.134-137
    • /
    • 2019
  • In this paper, the data retention characteristics were analyzed to find out the thickness effect on the trap energy distribution of silicon nitride in the silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices. The nitride films were prepared by low pressure chemical vapor deposition (LPCVD). The flat band voltage shift in the programmed device was measured at the elevated temperatures to observe the thermal excitation of electrons from the nitride traps in the retention mode. The trap energy distribution was extracted using the charge decay rates and the experimental results show that the portion of the shallow interface trap in the total nitride trap amount including interface and bulk trap increases as the nitride thickness decreases.

Electrical and interface characteristics of BST thin films grown by RF magnetron reactive sputtering (RF magnetron reactive sputtering 법으로 제작한 BST 박막의 전기적 및 계면 특성에 관한 연구)

  • 강성준;장동훈;유영섭
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.33-39
    • /
    • 1998
  • The BST (Ba$_{1-x}$ Sr$_{x}$TiO$_{3}$)(50/50) thin film has been grown by RF magnetron reactive sputtering and its characteristics such as crystallization, surface roughness, and electrical properties have been investigated with varying the film thickness. The crystallization and surface roughness of BST thin film are investigated by using XRD and AFM, respectively The BST thin film anealed at 800.deg. C for 2 min has pure perovskite structure and good surface roughness of 16.1.angs.. We estimate that the thickness and dielectric constant of interface layer between BST film and electrode are 3nm and 18.9, respectively, by measuring the capacitance with various film thickness. As the film thickness increases form 80nm to 240nm, the dielectric constant at 10kHz increases from 199 to 265 and the leakage current density at 200kV/cm decreases from 0.682.mu.A/cm$^{2}$ to 0.181 .mu.A/cm$^{2}$. In the case of 240nm-thick BST thin film, the charge storage density and leakage current density at 5V are 50.5fC/.mu.m$^{2}$ and 0.182.mu.A/cm$^{2}$, respectively. The values indicate that the BST thin film is a very useful dielectric material for the DRAM capacitor.or.

  • PDF

A Study on the Effect of Ti Ion Bombardment on the Interface in a Duplex Coating (Duplex coating에서 계면구조에 미치는 Ti 이온충격의 효과에 대한 연구)

  • Baek, Un-Seung;Gwon, Sik-Cheol;Lee, Jae-Yeong;Na, Jong-Ju;Lee, Sang-Ro;Lee, Gu-Hyeon;Lee, Geon-Hwan
    • 연구논문집
    • /
    • s.28
    • /
    • pp.219-227
    • /
    • 1998
  • In order to investigate the interfacial structure between TiN and iron nitride, an AISI 4140 steel was nitrided to form a layer of thickness 15$\mum$ by DC ion nitriding, then the surface was bombarded with Ti ions and subsequently coated a TiN film of 5$\mum$ by arc ion plating method. The interfacial microstructure between TiN and iron nitride was characterized by optical microscope, SEM and XRD. So called black layer was observed in the duplex treatment. It was resulted from the decomposition of iron nitride during the bombardment. Its thickness was increased with increasing bombardment time at high bias voltage. But the thickness was greatly decreased when the iron nitride was bombarded with a nitrogen gas or at a reduced bias voltage. The adhesion strength of the top TiN coating was decreased with increasing thickness of the black layer. Furthermore, the reduced adhesion strength in this system was discussed in view of the interfacial structural relationship between TiN and iron nitride.

  • PDF

A study on the fabrication and characteristics of the scaled MONOS nonvolatile memory devices for low voltage EEPROMs (저전압 EEPROM을 위한 Scaled MONOS 비휘발성 기억소자의 제작 및 특성에 관한 연구)

  • 이상배;이상은;서광열
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.727-736
    • /
    • 1995
  • This paper examines the characteristics and physical properties of the scaled MONOS nonvolatile memory device for low programming voltage EEPROM. The capacitor-type MONOS memory devices with the nitride thicknesses ranging from 41.angs. to 600.angs. have been fabricated. As a result, the 5V-programmable MONOS device has been obtained with a 20ms programming time by scaling the nitride thickness to 57.angs. with a tunneling oxide thickness of 19.angs. and a blocking oxide thickness of 20.angs.. Measurement results of the quasi-static C-V curves indicate, after 10$\^$6/ write/erase cycles, that the devices are degraded due to the increase of the silicon-tunneling oxide interface traps. The 10-year retention is impossible for the device with a nitride less than 129.angs.. However, the MONOS memory device with 10-year retentivity has been obtained by increasing the blocking oxide thickness to 47.angs.. Also, the memory traps such as the nitride bulk trap and the blocking oxide-nitride interface trap have been investigated by measuring the maximum flatband voltage shift and analyzing through the best fitting method.

  • PDF

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

Numerical Simulation of Effects of TGO Growth and Asperity Ratio on Residual Stress Distributions in TC-BC-TGO Interface Region for Thermal Barrier Coatings (열차폐 코팅의 TGO 성장과 형상비에 따른 TC-BC-TGO 계면에서의 잔류응력 변화에 대한 유한요소해석)

  • Jang, Jung-Chel;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.415-420
    • /
    • 2006
  • The residual stresses in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloy samples using a Finite Element Method (FEM). It was found that the stress distribution of the interface boundary was dependent upon mainly the geometrical shape or its aspect ratio and the thickness of TGO layer, which was formed by growth and swelling behavior of oxide layer. Maximum compressive residual stress in the TBC/TGO interface is higher than that of the TGO/bond coat interface, and the tensile stress had nothing to do with change of an aspect ratio. The compressive residual stresses in the TBC/TGO and TGO/bond coat interface region increased gradually with the TGO growth.

Effects of Magnetic Layer Thickness on Magnetic Properties of CoCrPt/Ti/CoZr Perpendicular Media

  • Hwang, M.S.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.19-22
    • /
    • 2001
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt film thickness has been studied. As the CoCrPt film thickness increases from 25 nm, the Ms (saturation magnetization) increases rapidly at first and then more gradually. This Ms behavior is associated primarily with the formation of an "amorphous-like"reacted layer created by intermixing of CoCrPt and Ti at the CoCrPt/Ti interface and secondarily with a change of the Cr segregation mode with varying CoCrPt film thickness. Magnetic domain structure distinctively changes with increasing CsCrPt magnetic layer (ML) thickness. Also the strength of exchange coupling measured from the slope in the demagnetizing region of the M-H loop changes with ML thickness. The expansion of lattice parameters a and c at smaller film thickness suggests that the Cr segregation mode may be connected with the residual stress of the films. Finally, the negative nucleation field (Hn) shows a unique behavior with the change of strength of the exchange interaction.teraction.

  • PDF

Characteristics of Interface States in One-dimensional Composite Photonic Structures

  • Zhang, Qingyue;Mao, Weitao;Zhao, Qiuling;Wang, Maorong;Wang, Xia;Tam, Wing Yim
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.270-281
    • /
    • 2022
  • Based on the transfer-matrix method (TMM), we report the characteristics of the interface states in one-dimensional (1D) composite structures consisting of two photonic crystals (PCs) composed of binary dielectrics A and B, with unit-cell configurations ABA (PC I) and BAB (PC II). The dependence of the interface states on the number of unit cells N and the boundary factor x are displayed. It is verified that the interface states are independent of N when the PC has inversion symmetry (x = 0.5). Besides, the composite structures support the formation of interface states independent of the PC symmetry, except that the positions of the interface states will be varied within the photonic band gaps. Moreover, the robustness of the interface states against nonuniformities is investigated by adding Gaussian noise to the layer thickness. In the case of inversion symmetry (x = 0.5) the most robust interface states are achieved, while for the other cases (x ≠ 0.5) interface states decay linearly with position inside the band gap. This work could shed light on the development of robust photonic devices.

Properties of Acrylic Pressure Sensitive Adhesive Performance and Evaluation Using Combinatorial Methods (조합기법을 활용한 아크릴 점착제의 점착물성 평가)

  • Park, Ji Won;Lim, Dong-Hyuk;Kim, Hyun Joong;Kim, Kyoung Mahn;Kim, Hyung Il;Ryu, Jong Min
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.127-133
    • /
    • 2009
  • Acrylic pressure sensitive adhesives (PSAs) are used in various field of high-technology industries such as semiconductor, display, mobile, automobile, and so on. Because of they have high durabilities and can be easily introduced functional groups in their molecular structures. PSA perfomances has an effect on their applications in industry process operation, reliability of final products. In this study, PSA performances as a function of fim thickness which is one of the impact factors effects on PSA performances will be investigated using combinatorial methods. Acrylic PSAs are synthesized using 2-ethylhexyl acrylate and acrylic acid. Thickness-gradient of acrylic PSA sample is made by a micro applicator. We compare general coating method with thickness-gradient coating method and evaluate the reappearance of combinatorial methods compared with existing coating method. Thickness-gradient of acrylic PSA sample shows rough and broad data tendency.

  • PDF

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong;Bauer, Erich;Sloan, Scott W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.