Browse > Article
http://dx.doi.org/10.12989/sem.2003.15.3.315

Behaviour of interfacial layer along granular soil-structure interfaces  

Huang, Wenxiong (Discipline of Civil, Surveying & Environmental Engineering, School of Engineering, The University of Newcastle)
Bauer, Erich (Institute of General Mechanics, Graz University of Technology)
Sloan, Scott W. (Discipline of Civil, Surveying & Environmental Engineering, School of Engineering, The University of Newcastle)
Publication Information
Structural Engineering and Mechanics / v.15, no.3, 2003 , pp. 315-329 More about this Journal
Abstract
As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.
Keywords
soil-structure interface; shear localization; Cosserat continuum; hypoplasticity;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Aifantis, E.C. (1984), "On the microstructural original of certain inelastic models", J. Eng. Mat. Technol., 106, 326-334.   DOI   ScienceOn
2 Bauer, E. (2000), "Conditions for embedding Casagrade's critical states into hypoplasticity", Mech. Cohesive- Frict. Mater., 2(2), 213-237.
3 Brummund, W.F. and Leonards, G.A. (1973), "Experimental study of static and dynamic friction between sand and typical construction materials", Journal of Testing & Evaluation, 1, 162-165.   DOI
4 de Borst, R. (1991), "Simulation of strain localization: A reappraisal of the Cosserat continuum", Engineering Computations, 8, 317-332.   DOI
5 Huang, W. and Bauer, E. (2003), "Numerical investigations of shear localization in a micro-polar hypoplastic materials", Int. J. Numer. and Anal. Meth. Geomech., 27, 325-352.   DOI   ScienceOn
6 Huang, W., Nübel, K. and Bauer, E. (2002), "Polar extension of a hypoplastic model for granular materials with shear localization", Mechanics of Materials, 34, 563-576.   DOI   ScienceOn
7 Kolymbas, D. (2000), Introduction to Hypoplasticity, A.A. Balkema.
8 Loffelmann, F. (1989), "Theoretische und experimentelle Untersuchungen zur Schüttgut-Wand-Wechselwirkung und zum Mischen und Entmischen von Granulaten", Doctoral thesis, University of Karlsruhe.
9 Needleman, A. and Tvergaard, V. (1984), "Finite element analysis of localization in plasticity", In J.T. Oden and G.F. Carey (eds.), Finite Elements: Special Problems in Soil Mechanics, Prentice-Hall, 94-157.
10 Niemunis, A. (1993), "Hypoplasticity vs Elastoplasticity, Selected Topics", In D. Kolymbas (ed.) Modern Approaches to Plasticity, Elsevier, 277-307.
11 Roscoe, K.H. (1970), "The influence of strains in soil mechanics, 10th Rankine lecture", Geotechnique, 20(2), 129-170.   DOI
12 Tejchman, J. and Bauer, E. (1996), "Numerical simulation of shear band formation with a polar hypoplastic constitutive model", Computers and Geotechnics, 19(3), 221-244.   DOI   ScienceOn
13 Tejchman, J. and Gudehus, G. (2001), "Shearing of a narrow granular layer with polar quantities", Int. J. Numer. Anal. Meth. Geomech., 25, 1-28.   DOI   ScienceOn
14 Usugi, M., Kishida, H. and Tsubakihara, Y. (1988), "Behavior of sand particles in sand-steel friction", Soils and Foundations, 28(1), 107-118.   DOI
15 Huang, W. (2000), "Hypoplastic modelling of shear localization in granular materials", PhD Thesis, Graz University of Technology.
16 Muhlhaus, H.-B. and Vadoulakis, I. (1987), "The thickness of shear bands in granular materials", Geotechnique, 37, 271-283.   DOI   ScienceOn
17 Herle, I. and Gudehus, G. (1999). "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. of Cohesive-Fric. Mater., 4, 461-486.   DOI   ScienceOn
18 Wu, W. and Niemunis, A. (1996), "Failure criterion, flow rule and dissipation function derived from hypoplasticity", Mech. of Cohesive-Frict. Mater., 1, 145-163.   DOI
19 Kolymbas, D. (1985), "A generalized hypoelastic constitutive law", Proc. XI Int. Conf. Soil Mechanics and Foundation Engineering, San Francisco, A.A. Balkema.
20 Kishida, H. and Uesugi, M. (1987), "Tests of the interface between sand and steel in the simple shear apparatus", Geotechnique, 37, 45-52.   DOI   ScienceOn
21 Tejchman, J. (1997), "Modelling of shear localisation and autogeneous dynamic effects in granular bodies", Veroffentlichungen des Institutes fur Bodenmechanik und Felsmechanik der Universitat Fridericiana in Karlsruhe, Heft 140.
22 Truesdell, C. (1955), "Hypoelasticity", J. Rat. Mech. Anal., 4, 83-133.
23 Eringen, C. (1976), "Polar and nonlocal field theories", Continuum Physics, Vol. IV. Academic Press, New York, San Francisco, London.
24 Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soil and Foundations. 36(1), 1-12.   DOI   ScienceOn
25 Vardoulakis, I. and Aifantis, E.C. (1989), "Gradient dependent dilatancy and its implication in shear banding", Ingenieur Archiv, 59, 197-208.   DOI   ScienceOn
26 Rudnicki, J.W. and Rice, J. (1975), "Conditions for the localization of deformation in pressure sensitive dilatant materials", J. Mech. Phys. Solids, 23, 371-394.   DOI   ScienceOn
27 Bauer, E. (1996), "Calibration of a comprehensive hypoplastic model for granular materials", Soils and Foundations, 36(1), 13-26.   DOI   ScienceOn
28 Bauer, E. and Huang, W. (2001), "Evolution of polar quantities in a granular Cosserat material under shearing", In H.-B. Muhlhaus et al. (eds), Bifurcation and Localisation Theory in Geomechanics, Swets & Zeitlinger, Lisse, 227-238.
29 Tejchman, J. (1994), "Numerical study on localized deformation in a Cosserat continuum", In R. Chambon, J. Desrues and I. Vardoulakis (eds.) Localisation and Bifurcation Theory for Soils and Rocks, A.A. Balkema, 257-274.
30 de Borst, R. and Mühlhau, H.B. (1992), "Gradient-dependent plasticity: formulation and algorithmic aspects", Int. J. Numer. Method. Engng., 35, 521-539.   DOI
31 de Borst, R., Sluys, L.J., Mühlhaus, H.-B. and Pamin, J. (1993), "Fundamental issues in finite element analyses of localization of deformation", Engng. Computations, 10, 99-121.   DOI   ScienceOn
32 Gudehus, G. (1998), "Shear localization in simple grain skeleton with polar effect", In T. Adachi, F. Oka and A. Yashima (eds.), Proc. 4th Int. Workshop on Localization and Bifurcation Theory for Soils and Rocks, A.A. Balkema.
33 Oda, M., Konish, J. and Nemat-Nasser, S. (1982), "Experimental micromechanical evaluation of strength of granular materials: effect of particle rolling", Mechanics of Materials, 1, 269-283.   DOI   ScienceOn
34 Schaefer, H. (1967), "Das Cosserat-Kontinuum", Z. Angew. Math. Mech., 47, 485-498.   DOI
35 Bogdanova-Bontcheva, N. and Lippmann, H. (1975), "Rotationssymmetrisches ebenes Fliessen eines granularen Modellmaterials", Acta Mechanica, 21, 93-113.   DOI   ScienceOn
36 Tejchman, J. and Wu, W. (1995), "Experimental and numerical study of sand-steel interfaces", Int. J. Numer. Anal. Meth. Geomech., 19(3), 513-537.   DOI   ScienceOn
37 Rice, J. (1976), "The localization of plastic deformation", In W.D. Koiter (ed), Theoretical and Applied Mechanics, North Holland Publishing Company, Amsterdam, 207-220.
38 Tejchman, J. (1989), "Scherzonenbildung und Verspannungseffekte in Granulaten unter Berucksichtigung von Korndrehungen", Veroffentlichungen des Institutes fur Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 117.
39 Bauer, E. and Tejchman, J. (1995), "Numerical study of the effect of grain rotations and material behaviour in a fault zone", In Rossmanith (ed.) Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rocks. A.A. Balkema, 317-323.