DOI QR코드

DOI QR Code

Characteristics of Interface States in One-dimensional Composite Photonic Structures

  • Zhang, Qingyue (College of Mathematics and Physics, Qingdao University of Science and Technology) ;
  • Mao, Weitao (College of Mathematics and Physics, Qingdao University of Science and Technology) ;
  • Zhao, Qiuling (College of Mathematics and Physics, Qingdao University of Science and Technology) ;
  • Wang, Maorong (College of Mathematics and Physics, Qingdao University of Science and Technology) ;
  • Wang, Xia (College of Mathematics and Physics, Qingdao University of Science and Technology) ;
  • Tam, Wing Yim (College of Mathematics and Physics, Qingdao University of Science and Technology)
  • Received : 2022.02.28
  • Accepted : 2022.04.04
  • Published : 2022.06.25

Abstract

Based on the transfer-matrix method (TMM), we report the characteristics of the interface states in one-dimensional (1D) composite structures consisting of two photonic crystals (PCs) composed of binary dielectrics A and B, with unit-cell configurations ABA (PC I) and BAB (PC II). The dependence of the interface states on the number of unit cells N and the boundary factor x are displayed. It is verified that the interface states are independent of N when the PC has inversion symmetry (x = 0.5). Besides, the composite structures support the formation of interface states independent of the PC symmetry, except that the positions of the interface states will be varied within the photonic band gaps. Moreover, the robustness of the interface states against nonuniformities is investigated by adding Gaussian noise to the layer thickness. In the case of inversion symmetry (x = 0.5) the most robust interface states are achieved, while for the other cases (x ≠ 0.5) interface states decay linearly with position inside the band gap. This work could shed light on the development of robust photonic devices.

Keywords

Acknowledgement

National Natural Science Foundation of China (grant numbers: 11874232, 12174211, 61905127); Hong Kong RGC grants (grant numbers: AoE P-02/12, C6013-18G).

References

  1. M. Z. Hasan and C. L. Kane, "Topological insulators," Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045
  2. Z. Yue, G. Xue, J. Liu, Y. Wang, and M. Gu, "Nanometric holograms based on a topological insulator material," Nat. Commun. 8, 15354 (2017). https://doi.org/10.1038/ncomms15354
  3. M. M. H. Polash, S. Yalameha, H. Zhou, K. Ahadi, Z. Nourbakhsh, and D. Vashaee, "Topological quantum matter to topological phase conversion: fundamentals, materials, physical systems for phase conversions, and device applications," Mat. Sci. Eng. R 145, 100620 (2021). https://doi.org/10.1016/j.mser.2021.100620
  4. D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, "Transport in two-dimensional topological materials: recent developments in experiment and theory," 2D Mater. 7, 022007 (2020). https://doi.org/10.1088/2053-1583/ab6ff7
  5. Z. Zhang, M. H. Teimourpour, J. Arkinstall, M. Pan, P. Miao, H. Schomerus, R. El-Ganainy, and L. Feng, "Experimental realization of multiple topological edge states in a 1D photonic lattice," Laser Photonics Rev. 13, 1800202 (2019). https://doi.org/10.1002/lpor.201800202
  6. L. Lu, J. D. Joannopoulos, and M. Soljacic, "Topological states in photonic systems," Nat. Phys. 12, 626-629 (2016). https://doi.org/10.1038/nphys3796
  7. L.-H. Wu and X. Hu, "Scheme for achieving a topological photonic crystal by using dielectric material," Phys. Rev. Lett. 114, 223901 (2015). https://doi.org/10.1103/physrevlett.114.223901
  8. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, "Topological photonics," Rev. Mod. Phys. 91, 015006 (2019). https://doi.org/10.1103/revmodphys.91.015006
  9. J. Zhao, S. Huo, H. Huang, and J. Chen, "Topological interface states of shear horizontal guided wave in one-dimensional photonic quasicrystal slabs," Phys. Status Solidi. Rapid Lett. 12, 1800322 (2018). https://doi.org/10.1002/pssr.201800322
  10. X. Huang, M. Xiao, Z.-Q. Zhang, and C. T. Chan, "Sufficient condition for the existence of interface states in some two-dimensional photonic crystals," Phys. Rev. B 90, 075423 (2014). https://doi.org/10.1103/physrevb.90.075423
  11. Q. Wang, M. Xiao, H. Liu, S. N. Zhu, and C. T. Chan, "Optical interface states protected by synthetic Weyl points," Phys. Rev. X 7, 031032 (2017).
  12. H. S. Sozuer and K. Sevim, "Robustness of one-dimensional photonic band gaps under random variations of geometrical parameters," Phys. Rev. B 72, 195101 (2005). https://doi.org/10.1103/physrevb.72.195101
  13. P. A. Kalozoumis, G. Theocharis, V. Achilleos, S. Felix, O. Richoux, and V. Pagneux, "Finite-size effects on topological interface states in one-dimensional scattering systems," Phys. Rev. A 98, 023838 (2018). https://doi.org/10.1103/physreva.98.023838
  14. J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, "Enhancement of two-photon excited fluorescene using one-dimensional photonic crystals," Appl. Phy. Lett. 75, 3605 (1999). https://doi.org/10.1063/1.125402
  15. H. Inouye and Y. Kanemitsu, "Direct observation of nonlinear effects in a one-dimensional photonic crystal," Appl. Phy. Lett. 82, 1155 (2003). https://doi.org/10.1063/1.1556171
  16. G. Ma, S. H. Tang, J. Shen, Z. Zhang, and Z. Hua, "Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure," Opt. Lett. 29, 1769-1771 (2004). https://doi.org/10.1364/OL.29.001769
  17. L. Florescu, K. Busch, and S. John, "Semiclassical theory of lasing in photonic crystals," J. Opt. Soc. B 19, 2215-2223 (2002). https://doi.org/10.1364/JOSAB.19.002215
  18. M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phy. Lett. 92, 151108 (2008). https://doi.org/10.1063/1.2907488
  19. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, "Photonic crystal sensor based on surface waves for thin-film characterization," Opt. Lett. 27, 646-648 (2002). https://doi.org/10.1364/OL.27.000646
  20. E. Nussbaum, E. Sauer, and S. Hughes, "Inverse design of broadband and lossless topological photonic crystal waveguide modes," Opt. Lett. 46, 1732-1735 (2021). https://doi.org/10.1364/OL.420080
  21. M. Xiao, Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional systems," Phys. Rev. X 4, 021017 (2014).
  22. Q. Wang, M. Xiao, H. Liu, S. N. Zhu, and C. T. Chan, "Measurement of the Zak phase of photonic bands through the interface states of a metasurface photonic crystal," Phys. Rev. B 93, 041415 (2016). https://doi.org/10.1103/physrevb.93.041415
  23. W. S. Gao, M. Xiao, C. T. Chan, and W. Y. Tam, "Determination of Zak phase by reflection phase in 1D photonic crystals," Opt. Lett. 40, 5259-5262 (2015). https://doi.org/10.1364/OL.40.005259
  24. W. S. Gao, M. Xiao, B. J. Chen, E. Y. B. Pun, C. T. Chan, and W. Y. Tam, "Controlling interface states in 1D photonic crystals by tuning bulk geometric phases," Opt. Lett. 42, 1500-1503 (2017). https://doi.org/10.1364/OL.42.001500
  25. D. Gao, W. T. Mao, R. Zhang, J. Liu, Q. Zhao, W. Y. Tam, and X. Wang, "Tunable interface state in one dimensional composite photonic structure," Opt. Commun. 453, 124324 (2019). https://doi.org/10.1016/j.optcom.2019.124324
  26. P. Yeh, A. Yariv, and C.-S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977). https://doi.org/10.1364/JOSA.67.000423
  27. J. Liu, D. Gao, W. Mao, Q. Zhao, H. Ma, Y. Wang, X. Wang, T. K. Yung, and W. Y. Tam, "Characterization of free-standing 1D photonic crystals using an effective medium approach," Opt. Lett. 44, 4853-4856 (2019). https://doi.org/10.1364/ol.44.004853
  28. X. Shi, C. H. Xue, H. T. Jiang, and H. Chen, "Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals," Opt. Express 24, 18580-18591 (2016). https://doi.org/10.1364/OE.24.018580
  29. Q. Zhao, J. Liu, D. Gao, K. You, X. Wang, H. M. Leung, T. K. Yung, R. Zhang, and W. Y. Tam, "Reflection phase of photonic bands in finite bi-directional 1D photonic crystals using effective medium approach," OSA Continuum 1, 332-339 (2018). https://doi.org/10.1364/osac.1.000332