• Title/Summary/Keyword: Thermoplastic resin

Search Result 113, Processing Time 0.031 seconds

A Study on the Bonding Process of Carbon Fiber-Thermoplastic Composite Using Induction Heating Technology (유도가열 기술을 이용한 탄소섬유-열가소성 복합재의 접합 공정에 관한 연구)

  • Kang, Chang-Soo;Yoo, Myeong-Han;Seo, Min-Kang;Choi, Bo-Kyung
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.421-425
    • /
    • 2021
  • In this study, thermoplastic composites were manufactured using a thermoplastic resin (PEEK) with the same melting temperature and a highly heat-resistant carbon UD tapes with different carbon fibers (Type A, Type B). And the bonding characteristics and mechanical characteristics of each of the two produced thermoplastic composites by induction heating welding were examined. The bonding characteristics and mechanical characteristics of the thermoplastic composites were performed using C-Scan and B-Scan, which is a non-destructive inspection, and the single lap shear test, respectively. The temperature of the carbon composites surface was monitored using a thermal image camera.

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

  • Kim, Hongkyeong;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Rheological behavior of thermoset/thermoplastic blends of epoxy/polyethersulphone (PES) was monitored during curing of the epoxy resin. During the isothermal curing of the mixture, a fluctuation in viscosity just before the abrupt viscosity increase was observed. This fluctuation is found to be due to the phase separation of PES from the matrix epoxy resin during the curing. The experimentally observed viscosity fluctuation is simulated with a simple two phase suspension model in terms of the increase in domain size. The viscosity profiles obtained experimentally at different isothermal curing temperatures are in good agreement with the predictions from the simple model taking into account the viscosity change due to the growth of PES domain and the network formation of the epoxy matrix.

  • PDF

Rubber bound phenolic antioxidant and its application in thermoplastic elastomer

  • Klinpituksa, Pairote;Kiarttisarekul, Anyarat;Kaesaman, Azizon
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.175-183
    • /
    • 2014
  • Natural rubber bound phenolic antioxidant, 2,6-di-tert-butyl-4-vinylphenol (2,6-DBVP), was prepared from natural rubber and 2,6-DBVP in both solution and melt state. The 2,6-DBVP had been synthesized from 3,5-di-tert-butyl-4-hydroxybenzaldehyde and methyltriphenylphosphonium iodide ($MePPh_3I$) by Wittig reaction ($0^{\circ}C$ for 2 hrs, $N_2$ atmosphere). The conditions for preparation of natural rubber bound 2,6-DBVP (NR-DBVP) were optimized for both solution state (1 phr BPO and 8 phr 2,6-DBVP at $70^{\circ}C$ for 2 hrs) and for melt state (1 phr BPO and 8 phr 2,6-DBVP at $70^{\circ}C$ for 10 mins, with rotor speed of 60 rpm). A thermoplastic vulcanizate was obtained using a compatibilizer, polypropylene modified with phenolic resin (PhHRJ-PP), in a closed mixer ($180^{\circ}C$ for 3 mins, rotor speed 60 rpm). The antioxidant properties of vulcanized NR-DBVP, using phenolic as the vulcanization system, were similar to NR with the conventional antioxidant BHT. In addition, the antioxidant, water leaching property of the thermoplastic vulcanizate of NR-DBVP/PP were good in comparison to a NR blend with BHT; the morphologies of these thermoplastic vulcanizates were similar.

Degradation Assessment of Thermoplastic Synthetic Resin Using Propagation Characteristics of Ultrasound (초음파 전파특성을 이용한 열가소성 합성수지의 열화 평가)

  • Jeon, Woo-Sang;Kim, Gi-Jin;Kwon, Sung-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.141-147
    • /
    • 2014
  • A nondestructive ultrasonic technique was applied to evaluate the thermal characteristics and degradation of synthetic polymer resin (plastics) with better cost-effectiveness and functionality than glass and metal. Thermoplastic and transparent acrylic resin (PMMA) specimens were annealed at below the glass transition temperature ($T_g$), and the propagation characteristics (attenuation and velocity) were measured. The attenuation increased and the velocity decreased with thermal degradation. The results showed that the thermal aging of the specimens could be evaluated quantitatively and that the Tg could be evaluated qualitatively.

Recent Trend for Performance Improvement of Epoxy Resin (에폭시 수지의 물성 향상을 위한 최근 동향)

  • Jang, Jyong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.301-310
    • /
    • 1991
  • Epoxy resins have been widely used for many applications along with good processibility. However, epoxy resin systems have poor hot/wet performance properties and brittleness after resin curing and have limited to apply for environmental resistant materials. In order to improve the toughness of epoxy resin, this review article deals with incorporation method of rubber and high performance thermoplastics into the matrix resin. In addition, molecular design of epoxy resin and modification of thermoplastic have been introduced for improving hot/wet properties of epoxy resin.

  • PDF

Development of epoxy resin with modified thermoplastic polymer and application to the carbon fiber composites (개질된 열가소성 고분자를 이용한 에폭시 수지 개발과 탄소섬유 복합재료에의 응용)

  • 이광기;김민영;김원호;안병현;황병선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.237-240
    • /
    • 2002
  • Amino terminated polyetherimide(ATPEI) has been synthesized by bisphthalic anhydride arid m-phenylenediamine, after that characterized by differential scanning calorimetry(DSC), thermogravimetric analyzer(TGA). Fourier transform (FT-IR) spectroscopy and gel permeation chromatography(GPC). ATPEI was blend to improve the toughness of bisphenol-A type epoxy resin which was cured by nadic methyl anhydride(NMA). The fracture toughness and the molphology of the toughened epoxy resin was evaluated. The toughness of ATPEI modified epoxy resin was higher than that of the PEI modified epoxy resin. In addtion, carbon fiber/ATPEI modified epoxy resin composites were fabricated and the mechanical properties of the resulted composites were investigated.

  • PDF

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding (반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가)

  • Lee, Jae Hyo;Kang, Seung In;Kim, Sang Woo;Yi, Jin Woo;Seong, Dong Gi
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.39-43
    • /
    • 2020
  • Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

The Fluidity and Hardness of the Recycled Thermoplastic Elastomer in the Injection Molding process (엘라스토머 재생재의 사출성형시 유동성과 경도)

  • Noh, Byeong-Su;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • In recent, recycling of plastic material has became a major issue due to the landfills and environmental problem. This study investigated fluidity and hardness of thermoplastic vulcanizate(TPV), which is used for automobile component parts such as weather strip in order to replace ethylene propylene rubber (EPDM). So, using the spiral flow test mold, we conducted an experiment on fluidity and hardness of TPV according to injection molding conditions. As results of injection molding experiment, the recycled TPV's flow length was a little bit longer than virgin TPV and the hardness was decreased in case of using the recycled resin. Also, we investigated the morphology study by SEM photo.

  • PDF

In Situ Detection of the Onset of Phase Separation and Gelation in Epoxy/Anhydride/Thermoplastic Blends

  • Choe, Young-Son;Kim, Min-Young;Kim, Won-Ho
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.267-272
    • /
    • 2003
  • The isothermal cure reactions of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer (poly(dimmer acid-co-alkyl polyamine)) or PEI were studied using differential scanning calorimetry (DSC). Rheological measurements have been made to investigate the viscosity and mechanical relaxation behavior of the blends. The reaction rate and the final cure conversion were decreased with increasing the amount of thermoplastics in the blends. Lower values of final cure conversions in the epoxy/thermoplastic blends indicate that thermoplastics hinder the cure reaction between the epoxy and the curing agent. Complete miscibility was observed in the uncured blends of epoxy/thermoplastics up to $120^{\circ}C$ but phase separations occurred in the early stages of the curing process at higher temperatures than $120^{\circ}C$. According to the rheological measurement results, a rise of G' and G" at the onset of phase separation is seen. A rise of G' and G" is not observed for neat epoxy system since no phase separation is seen during cure reaction. At the onset of phase separation the rheological behavior was influenced by the amount of thermoplastics in the epoxy/thermoplastic blends, and the onset of phase separation can be detected by rheological measurements.