• Title/Summary/Keyword: Thermophilic microorganism

Search Result 32, Processing Time 0.024 seconds

Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius

  • Choi, Young-Jin;Jung, Eun-Kyoung;Park, Hyun-Joo;Paik, Seung R.;Jung, Seun-Ho;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.813-818
    • /
    • 2004
  • A systematic study of microbial fuel cells comprised of thermophilic Bacillus licheniformis and Bacillus thermoglucosidasius has been carried out under various operating conditions. Substantial amount of electricity was generated when a redox mediator was used. Being affected by operation temperature, the maximum efficiency was obtained at 50$^{\circ}C$ with an open circuit voltage of ca. 0.7 V. While a small change around the optimum temperature did not make much effect on the cell performance, the rapid decrease in performance was observed above 70$^{\circ}C$. It was noticeable that fuel cell efficiency and discharge pattern strongly depended on the kind of carbon sources used in the initial culture medium. In the case of B. thermoglucosidasius, glucose alone was utilized constitutively as a substrate in the microbial fuel cell irrespective of used carbons sources. When B. licheniformis was cultivated with lactose as a carbon source, best charging characteristics were recorded. Trehalose, in particular, showed 41.2% coulombic efficiency when B. thermoglucosidasius was cultured in a starch-containing medium. Relatively good repetitive operation was possible with B. thermoglucosidasius cells up to 12 cycles using glucose as a carbon source, when they were cultured with lactose as an initial carbon source. This study demonstrates that highly efficient thermophilic microbial fuel cells can be constructed by a pertinent modulation of the operating conditions and by carefully selecting carbon sources used in the initial culture medium.

Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

  • Amenabar, Maximiliano J.;Blamey, Jenny M.
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and $70^{\circ}C$, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both $NAD^+$ and $NADP^+$ as electron acceptors, displaying more affinity for $NADP^+$ than for $NAD^+$. No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at $100^{\circ}C$ for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.

Assessment of Indoor and Outdoor Air Quality through Determination of Microorganism (미생물을 이용한 일부 병원, 가정 및 일반 대기질의 평가)

  • Ha, Kwon Cheol;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.1
    • /
    • pp.73-81
    • /
    • 1991
  • To assess biological air quality, concentrations of viable airborne microbes were determined in hospital home and outdoor air from August 25 to October 18, 1990. Bacteria, fungi and thermophilic bacteria were sampled using gravitational and suctional sampling method. In bacteria groups, the Staphylococcus spp. was identified by microscopic examination and biochemical tests. Results of the study are as follows. 1. Results using the gravitational sampling method indicated that average numbers of airborne microbes in hospital home and outdoor air were 21.5, 12.2 and 17.6 CFU/plate, respectively. These levels are well within an appropriate standard of 50 CFU/plate suggested by Endo. 2. Results using the suctional sampling method indicated that total airborne microbe concentrations in hospital, home and outdoor air were 1,998, 1,363 and $1,880CFU/m^3$, respectively. All of the results were within the recommended remedial action level, $10,000CFU/m^3$ of the American Conference of Governmental Industrial Hygienists(ACGIH). 3. Concentration of thermophilic bacteria in hospital and outdoor air were 79 and $111CFU/m^3$, respectively. Thermophilic bacteria were not detected in the home air. These results were within the remedial action level, $500CFU/m^3$. 4. Concentrations of Gram negative bacilli in holpital home and outdoor air were 20.3, 23.6 and $16.8CFU/m^3$, respectively. all were within the remedial action level, $500CFU/m^3$, recommended by ACGIH. 5. Concentrations of Staphylococcus spp. in hospital, home and outdoor air were 34.8, 14.7, and $22.4CFU/m^3$. respectively. all were within the remedial action level, $75CFU/m^3$, recommended by ACGIH. The percentages of Staphylococcus spp. in total bacteria in hospital, home and outdoor air were 19.0, 10.2 and 14.5%, respectively.

  • PDF

Characteristics of Thermophilic Methane Fermentation Using the Organic Wastes (유기성 폐기물을 이용한 고온 메탄 발효의 특성)

  • Kim, Nam-Cheon;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In this work, it was investigated that various aspects of process, application situation, merits and short-coming results of the thermophilic methane fermentation with highly concentrated organic waste substances such as sewage sludges, food wastes and excretions. The merits of this methane fermentation were that it had a very fast reaction rate and was possible to proceed in high loads. It was also high in mortality for pathogenic microorganism and the digested sludge was more hygienic. However, the short-comings were that more energy was required for heating in the fermentation facility, no surplus energy could be gained from low concentration of organic waste, the fermentation treatment dropped level of water quality, thus burdens discharging process of water. Especially, the high concentration of methane fermentation could possibly lack nutritious salt and could face the disturbance by ${NH_4}^+-N$, a proper alternative was required. In general, thermophilic methane fermentation was considered as a better mean in disposing of cow excretion and food waste which were highly concentrated organic wastes. On the other hand, under the condition where the concentration of waste material was low and the high concentrate waste material became higher than 3,000 mg/L in ${NH_4}^+-N$, thermophilic methane fermentation resulted less desirable outcome.

  • PDF

An Influence of Mixing Material Characteristics on the Composting of Food Waste (음식물쓰레기 퇴비화에서 혼합물 특성이 퇴비화에 미치는 영향)

  • 정준오;권혁구;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.22-27
    • /
    • 2002
  • The composting practice has been recognized as the most popular way of controlling food waste and many attempt have been made in the field to establish more efficient and economical process. Some of the efforts are mixing cured compost with sawdust as alternative bulking agent, seeding commercially produced microorganism and/or combination of above. However, verification of such efforts is often restricted because of either the lack of engineering consideration on the limitation of composting facility scales. In this study, the effect of mixing materials in food waste composting was investigated by controlling the combination and the mixing ratio of them. When the cured compost was mixed with saw dust. the decomposition of organic material was proven to be more active by observing the compost temperature, the oxygen (O$_2$) consumption, and the cumulative carbon dioxide ($CO_2$) profile. However, the quantity of compost mix-ing seemed not to influence the reaction as long as the minimum required amount was mixed. The feeding of com-mercially produced microorganism had a tendency to prolong the thermophilic stage, which helped to increase the decomposition but it resulted in composting period. Regardless of the composting condition, bacteria and actinomycetes increased in population as the reaction approached to the end. The population of bacteria and actinomycetes were rel-atively higher than those of fungi and yeast throughout the reaction.

Enzyme Production Related to Alcohol Metabolism from Thermophilic Fungus Thermoascus aurantiacus (호열성 사상균 Thermoascus aurantiacus의 알코올분해대사 관련 효소학적 특성)

  • Ko Hee-Sun;Kim Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.216-220
    • /
    • 2006
  • Thermophillic fungus Thermoascus aurantiacus showed excellent growth and produced high amount of alcohol oxidase and catalase in a pectin medium. Besides, the strain produced enzymes which related with pectin or alcohol decomposition. We detected extracellular pectin esterase (EC 3.1.1.11) activity and, both intracellular and extracellular pectinase (EC 4.2.2.10) activity, as pectinolytic enzymes produced by T. aurantiacus. The production of methanol decomposition enzymes, such as alcohol oxidase (AOD, EC 1.1.3.13), alcohol dehydrogenase (ADH, EC 1.1.1.1), formaldehyde dehydrogenase (FADH, EC 1.2.1.1) and formate dehydrogenase (FDH, EC 1.2.1.2) follows by pectin esterase reaction which is converted to methanol. We concluded that T. aurantiacus has pectinolytic and alcohol - oxidative enzymological mechanism which produced carbon dioxide as a final material, started from pectin.

The Treatment of Organic Wastewater using Thermophilic Oxic Process (고온호기발효공법을 이용한 유기성폐수의 처리)

  • 유순주;류재근;서윤수;도삼유평
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 1995
  • Most of small- scale livestock facility have difficulties to treat organic wastewater by activated sludge process as distinguished feces and urine. The organic wastewater discharged have characteristics of slurry, high concentration of BOD, 55 etc. This study was performed to estimate suitable condition for the application of packing materials, air flow, pollutant load and so on as important parameter to treat organic wastewater by thermopile oxlc process. As a result obtained at this experiments the most suitable condition for BOD load, air flow indicate 3.0kg · m$^{-3}$ day$^{-1}$,50 ∼ 100L· min$^{-1}$ m$^{-3}$, respectively, and we knew that it was necessary to add waste contained high calories to degrade about 80% of pollutant among waste- water. It showed that plastic material can be used as packing media because it can be provided as inhabitation for microorganism owing to intensity of material and characteristic of keeping moisture.

  • PDF

Medium characteristics during the outdoor-composting stage of medium preparation with a prototype medium turner in button mushroom cultivation (양송이 배지교반기 시제품을 활용한 배지 조제시 야외 발효단계별 배지의 특성)

  • Lee, Chan-Jung;Yu, Byeong-Kee;Lee, Eun-Ji;Park, Hae-Sung;Kong, Won-Sik;Kim, Yeong-Ho
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2018
  • This study was performed to compare medium characteristics during the composting stage for medium turning performed using an excavator agitator and a prototype medium turner in button mushroom cultivation. The changes in temperature in the medium did not significantly differ between the treatments until the 3rd turn performed using the excavator agitator. However, during the 4th and 5th turns, the temperature increased during turning with the prototype medium turner. During outdoor composting, various types of microorganisms such as thermophilic bacteria (Bacillus spp.), Actinomycetes, fluorescent Pseudomonas spp., and filamentous fungi were found to be distributed in the medium. The counts of aerobic bacteria and fluorescent Pseudomonas spp. did not significantly differ between treatments, and the counts of thermophilic bacteria and thermophilic actinomycetes were slightly higher during turning with the prototype medium turner. The rice straw was slightly shorter and water content lower for the prototype medium turner. There was no significant difference between pH and EC treatments. The L, a, and b values tended to increase on turning with the prototype medium turner.

Study of Thermostable Chitinase Enzymes from Indonesian Bacillus K29-14

    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.647-652
    • /
    • 2004
  • Thermophilic microorganisms capable of producing chitinase enzymes were screened from samples collected from several crater and geothermal areas. The chitinolytic microorganisms were grown in a selective medium containing colloidal chitin. The Bacillus K29-14 isolate was found to exhibit the highest chitinase and chitin deacetylase activities. When grown in a chitin-containing medium, the isolate produced extracellular chitinase after 24 h of incubation. The optimum temperature and pH for the chitinase were $55^\circ{C}$ and pH 7, respectively, while those for the chitin deacetylase were $55^\circ{C}$ and pH 8, respectively. The thermostable chitinase and chitin deacetylase also retained 80- 90% of their activity after incubation for 5 h at $70^\circ{C}$. The divalent cations $CoCl_2\;and\;NiCl_2$, increased the chitinase activity, while $ZnCl_2$, inhibited the enzyme. The chitin deacetylase was also activated by the presence of $MgCl_2$ and inhibited by $MnCl_2,\;NiCl_2,\;and\;CaCl_2$. A zymogram analysis revealed several forms of chitinase, with a 67 kDa form being the major enzyme.

Symbiobacterium toebii Sp. nov., Commensal Thermophile Isolated from Korean Compost

  • Sung, Moon-Hee;Bae, Jin-Woo;Kim, Joong-Jae;Kim, Kwang;Song, Jae-Jun;Rhee, Sung-Keun;Jeon, Che-Ok;Choi, Yoon-Ho;Hong, Seung-Pyo;Lee, Seung-Goo;Ha, Jae-Suk;Kang, Gwan-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1013-1017
    • /
    • 2003
  • A thermophilic nonspore-forming rod isolated from hay compost in Korea was subjected to a taxonomic study. The microorganism, designated as $SC-1^T$, was identified as a nitrate-reducing and nonmotile bacterium. Although the strain was negatively Gram-stained, a KOH test showed that the strain $SC-1^T$ belonged to a Gram-positive species. Growth was observed between 45 and $70^{\circ}C$. The optimal growth temperature and pH were $60^{\circ}C$ and pH 7.5, respectively. The G+C content of the genomic DNA was 65 mol% and the major quinone types were MK-6 and MK-7. A phylogenetic analysis based on 16S rDNA sequences revealed that the strain $SC-1^T$ was most closely related to Symbiobacterium thermophilum. However, the level of DNA-DNA relatedness between strain $SC-1^T$ and the type strain for Symbiobacterium thermophilum was approximately 30%. Accordingly, on the basis of the phenotypic traits and molecular systematic data, the strain $SC-1^T$ would appear to represent a new species within the genus Symbiobacterium. The type strain for the new species is named $SC-1^T$ ($=KCTC\;0307BP^T;\;DSM15906^T$).