Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.2.91

Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven  

Amenabar, Maximiliano J. (Fundacion Cientificay Cultural Biociencia)
Blamey, Jenny M. (Fundacion Cientificay Cultural Biociencia)
Publication Information
BMB Reports / v.45, no.2, 2012 , pp. 91-95 More about this Journal
Abstract
Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and $70^{\circ}C$, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both $NAD^+$ and $NADP^+$ as electron acceptors, displaying more affinity for $NADP^+$ than for $NAD^+$. No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at $100^{\circ}C$ for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.
Keywords
Enzyme purification and characterization; Glutamate dehydrogenase; Sterilization oven's microorganism; Thermophile; Thermostable;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Hough, D. W. and Danson, M. J. (1999) Extremozymes. Curr. Opin. Chem. Biol. 3, 39-46.   DOI   ScienceOn
2 Vieille, C. and Zeikus, G. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43.   DOI   ScienceOn
3 Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72, 248-254.   DOI   ScienceOn
4 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.   DOI   ScienceOn
5 Sammons, D. W., Adams, L. D. and Nishizawa, E. E. (1981) Ultrsensitive silver-based color staining of peptides in poliacrilamide gel electroforesis. Electrophoresis 2, 135-141.   DOI
6 Fiala, G. and Stetter, K. O. (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at $100{^{\circ}C}$. Arch. Microbiol. 145, 56-61.   DOI   ScienceOn
7 Adams, W. W. (1993) Enzymes and proteins from organisms that grow near and above $100{^{\circ}C}$. Annu. Rev. Microbiol. 47, 627-658.   DOI   ScienceOn
8 Anderson, D. E., Hurleym, J. H., Nicholsonm, H., Baasem, W. A. and Matthewsm, B. W. (1993) Hydrophobic core repacking and aromatic-aromatic interaction in the thermostable mutant of T4 lysozyme Ser 117-> Phe. Protein Sci. 2, 1285-1290.   DOI   ScienceOn
9 Antranikian, G., Vorgias, C. E. and Bertoldo, C. (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv. Biochem. Eng. Biotechnol. 96, 219-262.
10 Blochl, E., Rachel, R., Burggraf, S., Hafenbrandl, D., Jannasch, H. W. and Stetter, K. O. (1997) Pyrolobus fumarii, gen. and sp. nov. represents a novel group of archaea, estending the upper temperature limit for life to 113${^{\circ}C}$. Extremophiles 1, 14-21.   DOI   ScienceOn
11 Russell, R. J. M., Hough, D. W., Danson, M. J. and Taylor, G. L. (1994) The crystal structure of citrate synthase from the thermophilic archaeon Thermoplasma acidophilum. Structure 2, 1157-1167.   DOI   ScienceOn
12 Britton, K. L., Baker, P. J., Borges, K. M., Engel, P. C., Pasquo, A., Rice, D. W., Robb, F. T., Scandurra, R., Stillman, T. J. and Yip, K. S. P. (1995) Insights into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis. Eur. J. Biochem. 229, 688-695.   DOI   ScienceOn
13 Spassov, V. Z., Karshikoff, A. D. and Ladenstein, R. (1995) The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Protein Sci. 4, 1516-1527.   DOI   ScienceOn
14 Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S. P., Stillman, T. J., Britton, K. L., Rice, D. W., Klump, H. H. and Robb, F. T. (1998) Protein thermostability above 100${^{\circ}C}$: A key role for ionic interactions. Proc. Natl. Acad. Sci. U.S.A. 95, 12300-12305.   DOI   ScienceOn
15 Ma, K., Robb, F. T. and Adams, W. W. (1994) Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl. Environ. Microbiol. 60, 562-568.
16 Robb, F. T., Park, J. and Adams, W. W. (1992) Characterization of extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim. Biophys. Acta. 1120, 267-272.   DOI   ScienceOn
17 Kobayashi, T., Higuchi, S., Kimura, K., Kudo, T. and Horikoshi, K. (1995) Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J. Biochem. 118, 587-592.   DOI
18 Ahn, J. Y., Lee, K. S., Choi, S. Y. and Cho, S. W. (2000) Regulatory properties of glutamate dehydrogenase from Sulfolobus solfataricus. Mol. Cells. 10, 25-31.   DOI
19 Consalvi, V., Chiaraluce, R., Politi, L., Vaccaro, R., De Rosa, M. and Scandurra, R. (1991) Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur. J. Biochem. 202, 1189-1196.   DOI   ScienceOn
20 Niehaus, F., Bertoldo, C., Kahler, M. and Antranikian, G. (1999) Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51, 711-729.   DOI   ScienceOn
21 Van den Burg, B. (2003) Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6, 213-218.   DOI   ScienceOn
22 Lineweaver, H. and Burk, D. (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658-666.   DOI
23 Klump, H., Diruggiero, J., Kessel, M., Park, J., Adams, W. W. and Robb, F. T. (1992) Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 267, 22681-22685.
24 Danson, M. J., Hough, D. W., Russell, R. J. M., Taylor, G. L. and Pearl, L. (1996) Enzyme thermostability and thermoactivity. Protein Eng. 9, 629-630.   DOI
25 Minambres, B., Olivera, E. R., Jensen, R. A. and Luengo, J. M. (2000) A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J. Biol. Chem. 275, 39529-39542.   DOI   ScienceOn
26 Consalvi, V., Chiaraluce, R., Politi, L., Gambacorta, A., De Rosa, M. and Scandurra, R. (1991) Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur. J. Biochem. 196, 459-467.   DOI   ScienceOn
27 Ohshima, T. and Nishida, N. (1993) Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria Pyrococcus woesei and Pyrococcus furiosus. Biosci. Biotechnol. Biochem. 57, 945-951.   DOI   ScienceOn
28 Diruggiero, J. and Robb, F. T. (1995) Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Appl. Environ. Microbiol. 61, 159-164.
29 Brunhuber, N. M. and Blanchard, J. S. (1994) The biochemistry and enzymology of amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol. 29, 415-467.   DOI   ScienceOn
30 Smith, E. L., Austen, B. M., Blumenthal, K. M. and Nyc, J. F. (1975) Glutamate dehydrogenases; In The Enzymes (Boyer PD, Ed. ), pp. 293-367, Academic Press, New York, U.S.A.