• Title/Summary/Keyword: Thermoelectric materials

Search Result 399, Processing Time 0.027 seconds

Gas Sensing Properties of Powder Prepared from Waste Thermoelectric Devices by Wet Reduction Process

  • So, Hyeongsub;Im, Dong-Ha;Jung, Hyunsung;Lee, Kun-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.90-93
    • /
    • 2018
  • In this study, n-type $Bi_2Te_3$ in thermoelectric scrap is recovered through a wet reduction process. The recovered powder (tellurium) is grafted onto gas sensor in a new application that is not a thermoelectric device. Bismuth-rich powder is prepared by adding hydrazine when pH of the solution is brought to 13 using NaOH. The pH of the filtered solution was reduced using $HNO_3$, and then hydrazine was added to perform the re-reduction reaction. The tellurium-rich powder can be obtained through this reaction. The elemental analysis for these powders is confirmed by energy dispersive X-ray spectroscopy (EDS) analysis ; the successful separation of bismuth and tellurium is confirmed. Separated tellurium powder is mixed with DMF solvent and ethyl cellulose binder to confirm gas sensing properties. The tellurium paste was exposed in $NO_x$ atmosphere and exhibited a rapid reaction rate and recovery rate of less than 3 minutes for the gas.

Characterization of Planar Defects in Annealed SiGe/Si Heterostructure

  • Lim, Young-Soo;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.699-702
    • /
    • 2009
  • Due to the importance of the SiGe/Si heterostructure in the fields of thermoelectric and electronic applications, SiGe/Si heterostructures have been extensively investigated. For practical applications, thermal stability of the heterostructure during the thermoelectric power generation or fabrication process of electronic devices is of great concern. In this work, we focused on the effect of thermal annealing on the defect configuration in the SiGe/Si heterostructure. The formation mechanism of planar defects in an annealed SiGe/Si heterostructure was investigated by transmission electron microscopy. Due to the interdiffusion of Si and Ge, interface migration phenomena were observed in annealed heterostructures. Because of the strain gradient in the migrated region between the original interface and the migrated interface, the glide of misfit dislocation was observed in the region and planar defects were produced by the interaction of the gliding misfit dislocations. The planar defects were confined to the migrated region, and dislocation pileup by strain gradient was the origin of the confinement of the planar defect.

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites

  • Choi, Deok-Yeong;Cha, Ye-Eun;Kim, Il-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.822-828
    • /
    • 2018
  • P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).

Thermoelectric Properties of Mn-doped FeSi2 (Mn 첨가 FeSi2의 열전변환특성)

  • Pai, Chul-Hoon;Park, Hyoung-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.315-320
    • /
    • 2008
  • The effect of Mn additive on the thermoelectric properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of temperature under Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased with increasing temperatures showing typical semiconducting behavior. The electrical conductivity of Mn-doped specimens are higher than that of undoped specimens and increased slightly with increasing the amount of Mn additive. This must be due to the difference in carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi(The ${\varepsilon}$-FeSi was detected in spite of 100 h annealing treatment at $830^{\circ}C$). And metallic conduction increased slightly with increasing the amount of Mn additive. On the other hand, Mn-doped specimens showed the lower Seebeck coefficient due to metallic phase. The power factor of Mn-doped specimens are higher than that of undoped specimens and would be affected by the electrical conductivity more than Seebeck coefficient.

Thermoelectric Properties of AlN-doped SiC Ceramics (AlN 첨가 SiC 세라믹스의 열전변환특성)

  • Pai, Chul-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.839-845
    • /
    • 2012
  • The effect of an AlN additive on the thermoelectric properties of SiC ceramics was studied. Porous SiC ceramics with 48-54% relative density were fabricated by sintering the pressed ${\alpha}-SiC$ powder compacts with AlN at $2100-2200^{\circ}C$ for 3 h in an Ar atmosphere. In the undoped specimens, the Seebeck coefficients were positive (p-type semiconducting) possibly due to a dominant effect of the acceptor impurities (Al, Fe) contained in the starting powder. With AlN addition, the reverse phase transformation of 6H-SiC to 4H-SiC was observed during the sintering process. The electrical conductivity of the AlN doped specimen was larger than that of the undoped specimen under the same conditions, which might be due to a reverse phase trans-formation. The Seebeck coefficient of the AlN doped specimen was also larger than that of the undoped specimen. The density of specimen and the amount of addition had significant effects on the thermoelectric properties.

Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials (비정질 산화물 반도체의 열전특성)

  • Kim, Seo-Han;Park, Cheol-Hong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.52-52
    • /
    • 2018
  • Only approximately 30% of fossil fuel energy is used; therefore, it is desirable to utilize the huge amounts of waste energy. Thermoelectric (TE) materials that convert heat into electrical power are a promising energy technology. The TE materials can be formed either as thin films or as bulk semiconductors. Generally, thin-film TE materials have low energy conversion rates due to their thinness compared to that in bulk. However, an advantage of a thin-film TE material is that the efficiency can be smartly engineered by controlling the nanostructure and composition. Especially nanostructured TE thin films are useful for mitigating heating problems in highly integrated microelectronic devices by accurately controlling the temperature. Hence, there is a rising interest in thin-film TE devices. These devices have been extensively investigated. It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (${\kappa}$) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (${\mu}$) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In-Zn-O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was measured to have poor ${\kappa}$ and high electrical conductivity compared to crystalline $In_2O_3:Sn$ (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in the transparent display devices.

  • PDF

Electrodeposition of Antimony Telluride Thin Films and Composition-Dependent Thermoelectric Characterization

  • Kim, Jiwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2020
  • Antimony telluride (SbxTey) thin films were synthesized by an electrodeposition method with a control of applied potential at room temperature. Characterization of electrical and thermoelectric properties such as conductivity, Seebeck coefficient, and power factor (P.F.) were conducted as a function of the chemical composition of the electrodeposited films. Morphology of thin films were dense and uniform and the composition was tailored from 25 to 60 at.% of the Sb content by altering the applied potential from -0.13 to -0.27 V (vs. SCE). The conductivity of the films were ranged from 2 × 10-4 ~ 5 × 10-1 S/cm indicating their amorphous behavior. The meaured Seebeck coefficient of films were relatively high compared to that of bulk single cyrstal SbxTey due to their low carrier concentration. The variation of the Seebeck coefficient of the films was also related to the change of chemical composition, showing the power factor of ~10 ㎼/mK2.

Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source

  • Ezzat, Magdy A.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2020
  • We design the Green-Naghdi model type III (GN-III) with widespread thermoelasticity for a thermoelectric half space using a memory-dependent derivative rule (MDD). Laplace transformations and state-space techniques are used in order to find the general solution for any set of limit conditions. A basic question of heat shock charging half space and a traction-free surface was added to the formulation in the present situation of a traveling heat source with consistent heating speed and ramp-type heating. The Laplace reverse transformations are numerically recorded. There are called the impacts of several calculations of the figure of the value, heat source spead, MDD parameters, magnetic number and the parameters of the ramping period.

Variations of the Thermoelectric Characteristics of ZnO Nanofibers from the Use of a Thermal Treatment

  • Park, Yoonbeom;Cho, Kyoungah;Lee, Donghoon;Kim, Sangsig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.208-211
    • /
    • 2016
  • In this study, thermal-treatment-derived variations of the thermoelectric characteristics of ZnO nanofibers (NFs) are examined. NFs that were prepared by electrospinning were transformed into n-type ZnO NFs after they were exposed to thermal heating for 30 min at 550℃. For the ZnO NFs, the Seebeck coefficient decreased from - 132.1 μV/K to - 44.6 μV/K over the heating-time range of 30 min to 120 min, while the electrical conductivity increased from 2.07 × 10-3 S/m to 0.18 S/m.