Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.11.822

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites  

Choi, Deok-Yeong (Department of Material Science and Engineering, Korea National University of Transportation)
Cha, Ye-Eun (Department of Material Science and Engineering, Korea National University of Transportation)
Kim, Il-Ho (Department of Material Science and Engineering, Korea National University of Transportation)
Publication Information
Korean Journal of Metals and Materials / v.56, no.11, 2018 , pp. 822-828 More about this Journal
Abstract
P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).
Keywords
thermoelectric; skutterudite; partial double filling; charge compensation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Mandrus, A. Migliori, T. W. Darling, M. FM Hundley, E. J. Peterson, and J. D. Thompson, Phys. Rev. B 52, 4926 (1995).   DOI
2 Z. Chen, H. Yang, R. Liu, L. Xi, W. Zhang, and H. Yang, J. Electron. Mater. 42, 2492 (2013).   DOI
3 J. Leszczynski, V. D. Ros, B. Lenoir, A. Dauscher, C. Candolfi, P. Masschelein, J. Hejtmanek, K. Kutorasinski, J. Tobola, R. I. Smith, C. Stiewe, and E. M ller, J. Phys. D 46, 495106 (2013).   DOI
4 S. Ballikaya and C. Uher, J. Alloy. Compd. 585, 168 (2014).   DOI
5 G. Rogl, A. Grytsiv, L. Yubuta, S. Puchegger, E. Bauer, C. Raju, R. C. Mallik, and P. Rogl, Acta Mater. 95, 201 (2015).   DOI
6 Y. E. Cha and I. H. Kim, Korean J. Met. Mater. 56, 465 (2018).   DOI
7 R. D. Shammon, Acta Crystallogr. A 32, 751 (1976).   DOI
8 D. B rardan, E. Alleno, C. Godart, O. Rouleau, and J. Rodriguez-Carvajal, Mater. Res. Bull. 40, 537 (2005).   DOI
9 K. Yang, H. Cheng, H. H. Hng, J. Ma, J. L. Mi, X. B. Zhao, T. J. Zhu, and Y. B. Zhang, J. Alloy. Compd. 467, 528 (2009).   DOI
10 T. Dahal, Q. Jie, W. Liu, K. Dahal, C. Guo, Y. Lan, and Z. Ren, J. Alloy. Compd. 623, 104 (2015).   DOI
11 R. H. Liu, J. O. Yang, X. H. Chen, X. Shi, L. D. Chen, and C. Uher, J. Intermet. 19, 1747 (2011).   DOI
12 S. Ballikaya, N. Uzar, S, Yildirim, H. Chi, X. L. Su, G. J. Tan, X. F. Tang, and C. Uher, J. Electron. Mater. 42, 1622 (2013).   DOI
13 G. S. Joo, D. K. Shin, and I. H. Kim, J. Electron. Mater. 45, 1251 (2016).   DOI
14 A. L. Jasper, D. Kaczorowski, P. Rogl, J. Bogner, M. Reissner, W. Steiner, G. Wiesinger, and C. Godart, Sol. Stat. Comm. 109, 395 (1999).   DOI
15 D. M. Rowe, Thermoelectric Handbook: Macro to Nano, chap. 1, Boca Raton, FL, CRC Press (2006).
16 J. W. Kaiser and W. Jeitschko, J. Alloy. Compd. 291, 66 (1999).   DOI
17 J. Yu, W. Y. Zhao, P. Wei, D. G. Tang, and Q. J. Zhang, J. Electron. Mater. 41, 1414 (2012).   DOI
18 K. T. Wojcoechowski, Mater. Res. Bull. 37, 2023 (2002).   DOI