Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.4.393

Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source  

Ezzat, Magdy A. (Department of Mathematics, College of Science and Arts, Al Qassim University)
Publication Information
Geomechanics and Engineering / v.23, no.4, 2020 , pp. 393-403 More about this Journal
Abstract
We design the Green-Naghdi model type III (GN-III) with widespread thermoelasticity for a thermoelectric half space using a memory-dependent derivative rule (MDD). Laplace transformations and state-space techniques are used in order to find the general solution for any set of limit conditions. A basic question of heat shock charging half space and a traction-free surface was added to the formulation in the present situation of a traveling heat source with consistent heating speed and ramp-type heating. The Laplace reverse transformations are numerically recorded. There are called the impacts of several calculations of the figure of the value, heat source spead, MDD parameters, magnetic number and the parameters of the ramping period.
Keywords
thermoelectric materials; Green-Naghdi of type III; memory-dependent derivative; ramp-type heating; moving heat source; state-space approach; Laplace transforms; numerical result;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.   DOI
2 Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Mech. Tech. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
3 Biswas, S. (2019a), "Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field", Mech. Based Des. Struct. Mach., 47(3), 302-318. https://doi.org/10.1080/15397734.2018.1548968.   DOI
4 Biswas, S. (2019b), "Modeling of memory-dependent derivatives with the state-space approach", Multidisc. Model. Mat Struct., 16(4), 657-677. https://doi.org/10.1108/MMMS-06-2019-0120.   DOI
5 Biswas, S. and Mukhopadhyay, B. (2018), "Eigenfunction expansion method to analyze thermal shock behavior in magneto-thermoelastic orthotropic medium under three theories", J. Therm. Stresses, 41(3), 366-382. https://doi.org/10.1080/01495739.2017.1393780.   DOI
6 Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Thermal shock response in magneto-thermoelastic orthotropic medium with three-phase-lag model", J. Electromag. Waves Appl., 31(9), 879-897. https://doi.org/10.1080/09205071.2017.1326851.   DOI
7 Chandrasekharaiah, D.S. (1996) A uniqueness theorem in the theory of thermoelasticity without energy dissipation", J. Therm. Stresses, 19(3), 267-272. https://doi.org/10.1080/01495739608946173.   DOI
8 Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984.   DOI
9 Chirita, S. and Ciarletta, M. (2010), "Reciprocal and variational principles in linear thermoelasticity without energy dissipation", Mech. Res. Commun., 37(3), 271-275. https://doi.org/10.1016/j.mechrescom.2010.03.001.   DOI
10 Choudhuri, S.R. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stresses, 30(3), 231-238. https://doi.org/10.1080/01495730601130919.   DOI
11 Ciarletta, M. (1999), "A theory of micropolar thermoelasticity without energy dissipation", J. Therm. Stresses, 22(6) 581-594. https://doi.org/10.1080/014957399280760.   DOI
12 El-Karamany, A.S. and Ezzat, M.A. (2011), "On the two-temperature Green-Naghdi thermoelasticity theories", J. Therm. Stresses, 34(2), 1207-1226. https://doi.org/10.1080/01495739.2011.608313.   DOI
13 El-Karamany, A.S. and Ezzat, M.A. (2016), "On the phase-lag Green-Naghdi thermoelasticity theories", Appl. Math. Model., 40(9-10), 5643-5659. https://doi.org/10.1016/j.apm.2016.01.010.   DOI
14 Ezzat, M.A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys., 88(1) 35-48. https://doi.org/10.1139/P09-100.   DOI
15 Ezzat, M.A. (2008), "State space approach to solids and fluids", Can. J. Phys., 86(11), 1241-1250. https://doi.org/10.1139/P08-069.   DOI
16 Ezzat, M.A. and El-Bary, A.A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707.   DOI
17 Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2),177-186. https://doi.org/10.12989/scs.2017.25.2.177.   DOI
18 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A. (2016), "Electro-thermoelasticity theory with memory-dependent derivative heat transfer", Int. J. Eng. Sci., 99(2), 22-38. https://doi.org/10.1016/j.ijengsci.2015.10.011.   DOI
19 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A. (2018), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.   DOI
20 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2015), "A novel magneto-thermoelasticity theory with memory-dependent derivative", J. Electromag. Waves Appl., 29(8), 1018-1031. https://doi.org/10.1080/09205071.2015.1027795.   DOI
21 Ghazanfarian, J., Shomali, Z. and Abbassi, A. (2015), "Macro- to nano scale heat and mass transfer: The lagging behavior", Int. J. Thermophys., 36(7), 1416-1467. https://doi.org/10.1007/s10765-015-1913-4.   DOI
22 Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689.   DOI
23 Hetnarski, R.B. and Ignaczak, J. (2000), "Nonclassical dynamical thermoelasticity", Int. J. Solids Struct., 37(1), 215-224. https://doi.org/10.1016/S0020-7683(99)00089-X.   DOI
24 Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Royal Soc. London A, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
25 Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stresses, 15(2), 253-264. https://doi.org/10.1080/01495739208946136.   DOI
26 Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969.   DOI
27 Hiroshige, Y., Makoto, O. and Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synth. Metals., 157(10-12), 467-474. https://doi.org/10.1016/j.synthmet.2007.05.003.   DOI
28 Hohn, C., Galffy, M., Dascoulidou, A., Freimuth, A., Soltner, H. and Poppe, U. (1991), "Seebeck-effect in the mixed state of Y-Ba-Cu-O", Z. Phys. B., 85(2),161-168. https://doi.org/10.1007/BF01313216.   DOI
29 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.   DOI
30 Kaliski, S. and Nowacki, W. (1963), "Combined elastic and electro-magnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Int. J. Eng. Sci., 1(2), 163-175. https://doi.org/10.1016/0020-7225(63)90031-4.   DOI
31 Kothari, S. and Mukhopadhyay, S.A. (2011), "Problem on elastic half space under fractional order theory of thermoelasticity", J. Therm. Stresses, 34, 724-739. https://doi.org/10.1080/01495739.2010.550834.   DOI
32 Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.   DOI
33 Kumar, R., Sharma, N. and Lata, P. (2016), "Effect of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091.   DOI
34 Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.   DOI
35 Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solitidue to inclined load", Steel Comps. Struct., 33(1), 955-963. https://doi.org/10.12989/scs.2019.33.1.123.
36 Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.   DOI
37 Lotfy, K. and Sarkar, N. (2017), "Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature", Mech. Time-Dep. Mater., 21(4), 519-534. https://doi.org/10.1007/s11043-017-9340-5.   DOI
38 Mahan, G., Sales, B. and Sharp, J. (1997), "Thermoelectric materials: New approaches to an old problem", Phys. Today, 50(3), 42-47. https://doi.org/10.1063/1.881752.   DOI
39 Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus de l'Academie des Sciences Paris, 321(12), 375-480.
40 Marin, M. (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comput. Appl. Math., 70(1), 115-126. https://doi.org/10.1016/0377-0427(95)00137-9.   DOI
41 Marin, M. and Stan, G. (2013), "Weak solutions in elasticity of dipolar bodies with stretch", Car. J. Math., 29(1), 33-40.   DOI
42 Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlin. Anal., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001.   DOI
43 Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlin. Anal., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.   DOI
44 Marin, M. and Lupu, M. (1998), "On harmonic vibrations in thermoelasticity of micropolar bodies", J. Vib. Control, 4(5), 507-518. https://doi.org/10.1177/107754639800400501.   DOI
45 Mukhopadhyay, S. and Kumar, R. (2009), "Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity", J. Therm. Stresses, 32(4), 341-360. https://doi.org/10.1080/01495730802637183.   DOI
46 Othman, M.I., Ezzat, M.A., Zaki, S.A. and El-Karamany, A.S. (2002), "Generalized thermo-viscoelastic plane waves with two relaxation times", Int. J. Eng. Sci., 40(12), 1329-1347. https://doi.org/10.1016/S0020-7225(02)00023-X.   DOI
47 Povstenko, Y.Z. (2009), "Thermoelasticity that uses fractional heat conduction equation", J. Math. Sci., 162(2), 296-305. https://doi.org/10.1007/s10958-009-9636-3.   DOI
48 Rowe, D.M. (1995), Handbook of Thermoelectrics, CRC Press.
49 Sharma, K. (2010), "Boundary value problem in generalized thermodiffusive elastic medium", J. Solid Mech., 2(4), 348-362.
50 Sharma, S. and Sharma, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. https://doi.org/10.2478/ijame-2014-0029.   DOI
51 Sherief, H., El-Sayed, A.M.A. and Abd El-Latief, A.M. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034.   DOI
52 Sharma, S., Sharma, K. and Bhargava, R. (2016), "Effect of viscosity on wave propagation in anisotropic thermoelastic Green-Naghdi theory type-II and type-III", Mater. Phys. Mech., 16(2), 144-158.
53 Shaw, S. (2019), "Theory of generalized thermoelasticity with memory-dependent derivatives", J. Eng. Mech., 145(3), 04019003. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001569.   DOI
54 Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 191(3), 231-251. https://doi.org/10.1017/S0022112079000136.   DOI
55 Sherief, H.H. (1986), "Fundamental solution of generalized thermoelastic problem for short times", J. Therm. Stress., 9(2), 151-164. https://doi.org/10.1080/01495738608961894.   DOI
56 Sherief, H.H. and Raslan, W.E. (2016), "Thermoelastic interactions without energy dissipation in an unbounded body with a cylindrical cavity", J. Therm. Stresses, 39(3), 326-332. https://doi.org/10.1080/01495739.2015.1125651.   DOI
57 Sur, A. and Kanoria, M. (2019), "Memory response on thermal wave propagation in an elastic solid with voids", Mech. Based Des. Struct. Mach., 48(3), 326-347. https://doi.org/10.1080/15397734.2019.1652647.   DOI
58 Tiwari, R. and Mukhopadhyay, S. (2018), "Analysis of wave propagation in the presence of a continuous line heat source under heat transfer with memory dependent derivatives", Math. Mech. Solids, 23(5), 820-834. https://doi.org/10.1177/1081286517692020.   DOI
59 Tritt, T.M. (2000), Semiconductors and Semimetals, in Recent Trends in Thermoelectric Materials Research, Academic Press, San Diego, California, U.S.A.
60 Tschoegl, N.W. (1997), "Time dependence in material properties: An overview", Mech. Time-Depend. Mat., 1(1), 3-31. https://doi.org/10.1023/A:1009748023394.   DOI
61 Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Comput. Math. Appl., 62(3), 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028.   DOI
62 Xue, Z.N., Chen, Z.T. and Tian, X.G. (2018), "Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model", Eng. Fract. Mech., 200, 479-498. https://doi.org/10.1016/j.engfracmech.2018.08.018.   DOI
63 Yu, Y.J., Tian, X.G. and Tian, J.L. (2013), "Fractional order generalized electro-magneto-thermo-elasticity", Eur. J. Mech. A/Solids, 42,188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006.   DOI
64 Yu, B., Jiang, X. and Xu, H. (2015), "A novel compact numerical method for solving the two dimensional non-linear fractional reaction-subdiffusion equation", Num. Algor., 68(4), 923-950. https://doi.org/10.1007/s11075-014-9877-1.   DOI
65 Yu, Y.J. and Deng, Z.C. (2020), "New insights on microscale transient thermoelastic responses for metals with electron-lattice coupling mechanism", Eur. J. Mech. A/Solids, 80, 103887. https://doi.org/10.1016/j.euromechsol.2019.103887.   DOI
66 Yu, Y.J., Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81(3-4), 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014.   DOI
67 Zhang, H., Jiang, X. and Yang, X. (2018), "A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem", Appl. Math. Comput., 320, 302-318. https://doi.org/10.1016/j.amc.2017.09.040.   DOI