DOI QR코드

DOI QR Code

Characterization of Planar Defects in Annealed SiGe/Si Heterostructure

  • Lim, Young-Soo (Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won-Seon (Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology)
  • Published : 2009.12.27

Abstract

Due to the importance of the SiGe/Si heterostructure in the fields of thermoelectric and electronic applications, SiGe/Si heterostructures have been extensively investigated. For practical applications, thermal stability of the heterostructure during the thermoelectric power generation or fabrication process of electronic devices is of great concern. In this work, we focused on the effect of thermal annealing on the defect configuration in the SiGe/Si heterostructure. The formation mechanism of planar defects in an annealed SiGe/Si heterostructure was investigated by transmission electron microscopy. Due to the interdiffusion of Si and Ge, interface migration phenomena were observed in annealed heterostructures. Because of the strain gradient in the migrated region between the original interface and the migrated interface, the glide of misfit dislocation was observed in the region and planar defects were produced by the interaction of the gliding misfit dislocations. The planar defects were confined to the migrated region, and dislocation pileup by strain gradient was the origin of the confinement of the planar defect.

Keywords

References

  1. S. -J. Kim, J. -Y. Baek, T. -H. Shim, H. -J. Lee, J. -G. Park, K. -S. Kim and W. -J. Cho, J. Korean Phys. Soc., 53, 2171 (2008) https://doi.org/10.3938/jkps.53.2171
  2. X. F. Zhou, Z. M. Jiang, J. H. Lin, X. D. Tang, Q. M. Chen, H. Zhang, and P. X. Zhang, J. Phys. D Appl. Phys., 42, 225303 (2009) https://doi.org/10.1088/0022-3727/42/22/225303
  3. H. Klauk, T. N. Jackson, S. F. Nelson, and J. O. Chu, Appl. Phys. Lett., 68, 1975 (1996) https://doi.org/10.1063/1.115644
  4. Y. S. Lim, J. Y. Lee, H. S. Kim and D. W. Moon, Appl. Phys. Lett., 77, 4157 (2000) https://doi.org/10.1063/1.1327280
  5. J. H. Van der Merwe, J. Appl. Phys., 34, 123 (1962) https://doi.org/10.1063/1.1729051
  6. J. W. Mattews, and A. E. Blakeslee, J. Cryst. Growth, 27, 118 (1974)
  7. R. People, and J. C. Bean, Appl. Phys. Lett., 47, 322 (1985) https://doi.org/10.1063/1.96206
  8. F. Y. Huang, Phys. Rev. Lett., 85, 784 (2000) https://doi.org/10.1103/PhysRevLett.85.784
  9. S. Y. Shiryaev, F. Jensen, J. W. Petersen, J. L. Hansen, and A. N. Larsen, Appl. Phys. Lett., 71, 1972 (1997) https://doi.org/10.1063/1.119758
  10. F. K. Legoues, B. S. Meyerson, J. F. Morar, and P. D. Kirchner, J. Appl. Phys., 71, 4230 (1992) https://doi.org/10.1063/1.350803
  11. S. M. Jang, H. W. Kim, and R. Reif, Appl. Phys. Lett., 61, 315 (1992) https://doi.org/10.1063/1.107923
  12. R. Beanland, J. Appl. Phys., 72, 4031 (1992) https://doi.org/10.1063/1.352257
  13. J. C. Lee, C. S. Jeong, H. J. Kang, H. K. Kim, and D. W. Moon, Appl. Surf. Sci., 101/101, 97 (1996) https://doi.org/10.1016/0169-4332(96)00264-4
  14. X. Z. Liao, J. Zou, D. J. H. Cockayne, J. Qin, Z. M. Jiang, and X. Wang, Phys. Rev. B 60, 15605 (1999) https://doi.org/10.1103/PhysRevB.60.15605
  15. Y. S. Lim, J. S. Jeong, J. Y. Lee, H. S. Kim, H. K. Shon, H. K. Kim and D. W. Moon, Appl. Phys. Lett., 79, 3606 (2001) https://doi.org/10.1063/1.1415373
  16. Y. S. Lim, H. S. Kim, J. Y. Lee, and D. W. Moon, Appl. Phys. Lett., 80, 2481 (2002) https://doi.org/10.1063/1.1465500
  17. S. S. Iyer, and J. F. LeGoues, J. Appl. Phys., 65, 4693 (1989) https://doi.org/10.1063/1.343245
  18. G. MacPherson, R. Beanland, and P. J. Goodhew, Phil. Mag. A 73, 1439 (1996) https://doi.org/10.1080/01418619608245143
  19. J. P. Hirth, and J. Lothe, Theory of Dislocations, P. 764- 790, John Wiley & Sons, N.Y., USA (1982)