• Title/Summary/Keyword: Thermal pastes

Search Result 47, Processing Time 0.021 seconds

Correlation Study of Carbonation Analysis Methods for Cement Paste with Fly Ash (플라이애시가 혼입된 시멘트 페이스트의 탄산화 분석방법에 따른 상관관계 연구)

  • Eun-A Seo;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.54-61
    • /
    • 2024
  • This study conducted accelerated carbonation experiments on cement pastes using OPC and FA. It derived the correlation of pH prediction methods through component analysis of the carbonated pastes. Analysis of weight change due to thermal decomposition was performed using TG-DTA, and component analysis was conducted using XRF. A comparative review of each experimental result and pH measurement result was carried out. The study proposed a correlation analysis method between the component ratio of CO2 and CaO, the component ratio of calcium carbonate and calcium hydroxide, and pH. By analyzing the relationship between the CO2 components measured by XRF and pH, the correlation coefficients of all mixtures were 0.84 or higher, indicating a strong correlation.The correlation analysis of calcium carbonate and calcium hydroxide with pH using TG-DTA showed that the correlation coefficient for calcium carbonate was more than 0.86 for all formulations. However, the correlation coefficient between calcium hydroxide and pH was low, so a study was conducted to analyze the correlation with pH using the ratio of the results of the two components.

Effect of Amine Compounds on Electrical Properties of Graphene Oxide Films made by Bar Coating (바코팅에 의해 제조된 그래핀 옥사이드 필름의 전기적 특성에 미치는 아민 화합물의 영향)

  • Choi, Jin Whan;Lee, Seul Bi;Lee, Seong Min;Park, Wan-Su;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.331-335
    • /
    • 2015
  • We prepared films by a bar-coating of various graphene oxide (GO) pastes by varying pH with amine compounds. The thermal treatment of films at $150^{\circ}C$ and measurement of surface resistances exhibited that the pH variation does not significantly affect the surface resistance. We, however, found that the addition of amines reduced the surface resistance by approximately 10 times and N,N-dimethylethanolamine (DMEA) showed the most significant effect among all amines investigated. XPS studies demonstrated that the addition of DMEA accelerated the reduction reaction of GO, and finally enhanced the electrical properties of GO films.

Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding (플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향)

  • Choi, Won-Jung;Yoo, Se-Hoon;Lee, Hyo-Soo;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.454-458
    • /
    • 2012
  • Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.

Feasibility Study on the Use of CFBC Ash as Non-sintered Binder (순환유동층 보일러애시를 활용한 비소성 결합재로써의 활용 가능성 검토)

  • Kang, Yong Hak;Lim, Gwi Hwan;Kim, Sang Jun;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.119-126
    • /
    • 2018
  • Recently, the production of circulating fluidized bed combustion ash has been increased in thermal power plants. The addition of limestone for the desulfurizing effect of circulating fluidized bed boiler ash increases the content of CaO and $SO_3$ contained in ash, which is higher than the free fly ash in general fly ash. Unlike conventional fly ash, the circulating fluidized bed combustion ash has a high reactivity when it comes into contact with water due to its hydraulic properties and high free-CaO content. The aim of this study is to investigate the possibility of non-sintered binder by using self-cementing properties of circulating fluidized bed combustion ash. The mechanical and hydration characteristics were investigated according to the content of CFBC ash. In addition, the effects of gymsum type and content on the compressive strength and micro-structure of non-sintered binder pastes.

Interpretation of Material Provenance and Production Techniques of Pottery and Kilns from Gundong and Majeon Sites in the 3rd Century at Yeonggwang, Korea (영광 군동.마전 원삼국시대 토기와 가마의 제작특성 및 태토의 산지해석)

  • Jang, Sung-Yoon;Lee, Gi-Gil;Moon, Hee-Soo;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.101-114
    • /
    • 2009
  • Potsherds and kilns of the AD 3th century excavated from Gundong and Majeon sites, Korea were studied to investigate the production techniques and provenance of potsherds and kilns on the pastes. For potsherds, kilns blocks and in-situ paleo-soils, provenance of raw materials were estimated through mineralogy and geochemistry, while production technique and thermal feature of kilns were investigated through observation of textures and compositions as well as firing experiment on paleo-soils. As a result of study, potsherds and kilns were found to have similar mineralogical compositions as the neighboring paleo-soils and to have same evolution path with that of geochemistry. The potsherds were divided into 3 groups according to firing temperature and production technique. Group 1 consists of reddish stamped pattern pottery with loose textures, which has many pores and contains many iron oxides. Its temper is less than about 0.5mm, and was probably fired between 700 to $800^{\circ}C$. Group 2 contains ash to grayish blue stamped pattern pottery, which has vitrified texture and few pores. Its temper is less than about 0.5mm, and was probably fired from 900 to $1,000^{\circ}C$. However, some potsherd belongs to the group 2 in terms of features for temper and pastes, but it was probably fired over $1,100^{\circ}C$. Group 3 contains reddish and grayish stamped pattern pottery. It has vitrified matrix, few pores and temper consists of polycrystalline quartz and feldspar over 2mm, and it was probably fired around $1,000^{\circ}C$. The kiln had experienced temperature from 600 to $700^{\circ}C$ on the wall, from 900 to $1,000^{\circ}C$ on the bottom, suggesting the function of high temperature firing.

  • PDF

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications (주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합)

  • Yoon, Jeong-Won;Jeong, So-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.