DOI QR코드

DOI QR Code

Effect of Amine Compounds on Electrical Properties of Graphene Oxide Films made by Bar Coating

바코팅에 의해 제조된 그래핀 옥사이드 필름의 전기적 특성에 미치는 아민 화합물의 영향

  • Received : 2015.03.10
  • Accepted : 2015.04.08
  • Published : 2015.06.10

Abstract

We prepared films by a bar-coating of various graphene oxide (GO) pastes by varying pH with amine compounds. The thermal treatment of films at $150^{\circ}C$ and measurement of surface resistances exhibited that the pH variation does not significantly affect the surface resistance. We, however, found that the addition of amines reduced the surface resistance by approximately 10 times and N,N-dimethylethanolamine (DMEA) showed the most significant effect among all amines investigated. XPS studies demonstrated that the addition of DMEA accelerated the reduction reaction of GO, and finally enhanced the electrical properties of GO films.

아민 화합물로 pH를 변화시킨 산화 그래핀(Graphene oxide, GO) 페이스트를 바코팅하여 필름으로 제작하고 전기적 특성을 연구하였다. 필름을 $150^{\circ}C$에서 열처리한 후 표면저항을 측정한 결과, pH의 변화에 따라 표면저항 값에는 큰 차이가 없었다. 그러나 아민 화합물의 첨가에 의해서 표면저항이 약 10배 정도 감소하였으며, 아민 화합물 중에서도 N,N-dimethylethanolamine (DMEA)에 의한 효과가 가장 크게 나타났다. XPS 측정을 통해서 관련성을 분석한 결과, GO 필름 및 DMEA를 첨가한 GO 필름 모두 환원반응이 진행된 것으로 나타났으나, DMEA를 첨가한 경우에는 환원 반응이 촉진되었으며 궁극적으로 GO 필름의 전기적 특성을 향상시키는 것으로 밝혀졌다.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  2. Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  3. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  4. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  5. V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim, Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating, Carbon, 48, 1945-1951 (2010). https://doi.org/10.1016/j.carbon.2010.01.062
  6. J. Wang, M. H. Liang, Y. Fang, T. F. Qiu, J. Zhang, and L. J. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater., 24, 2874-2878 (2012). https://doi.org/10.1002/adma.201200055
  7. J. Ning, J. Wang, X. L. Li, T. F. Qiu, B. Luo, L. Hao, M. H. Liang, B. Wangab, and L. J. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films, J. Mater. Chem. A, 2, 10969-10973 (2014). https://doi.org/10.1039/c4ta00527a
  8. H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stoltenberg, Z. N. Bao, and Y. S. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2, 463-470 (2008). https://doi.org/10.1021/nn700375n
  9. X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. G. Wang, and H. J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 3, 538-542 (2008). https://doi.org/10.1038/nnano.2008.210
  10. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
  11. S. Y. Jeong, S. H. Kim, J. T. Han, H. J. Jeong, S. Y. Jeong, and G. W. Lee, Highly Concentrated and Conductive Reduced Graphene Oxide Nanosheets by Monovalent Cation-${\pi}$ Interaction Toward Printed Electronics, Adv. Funct. Mater., 22, 3307-3314 (2012). https://doi.org/10.1002/adfm.201200242
  12. C. Bosch-Navarro, E. Coronado, C. Marti-Gastaldo, J. F. Sanchez-Royo, and M. G. Gomez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions, Nanoscle, 4, 3977-3982 (2012). https://doi.org/10.1039/c2nr30605k
  13. P. Jomsurang and D. Sakamon, Evaluation of the effects of some additives and pH on surface tension of aqueous solutions using a drop-weight method, J. Food Eng., 70, 219-226 (2005). https://doi.org/10.1016/j.jfoodeng.2004.08.045
  14. L. M. Yates and R. von Wandruszka, Effects of pH and metals on the surface tension of aqueous humic materials, Soil Sci. Am. J., 63, 1645-1649 (1999). https://doi.org/10.2136/sssaj1999.6361645x
  15. H. Bai, C. Li, and G. Q. Shi, Functional composite material based on chemically converted graphene, Adv. Mater., 23, 1089-1115 (2011). https://doi.org/10.1002/adma.201003753
  16. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  17. N. I. Park, W. S. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide, Appl. Chem. Eng., 26, 99-103 (2015). https://doi.org/10.14478/ace.2014.1127
  18. N. Pan, D. Guan, Y. Yang, Z. Huang, R. Wang, Y. Jin, and C. Xia, A rapid low-temperature synthetic method leading to large-scale carboxyl graphene, Chem. Eng. J., 236, 471-479 (2014). https://doi.org/10.1016/j.cej.2013.10.060
  19. C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev., 43, 291-312 (2014). https://doi.org/10.1039/C3CS60303B

Cited by

  1. Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1119
  2. Study on the Thermal Stability of PEDOT/PSS Film Hybrided with Graphene Oxide vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1050