References
- A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
- Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
- J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
- S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim, Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating, Carbon, 48, 1945-1951 (2010). https://doi.org/10.1016/j.carbon.2010.01.062
- J. Wang, M. H. Liang, Y. Fang, T. F. Qiu, J. Zhang, and L. J. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater., 24, 2874-2878 (2012). https://doi.org/10.1002/adma.201200055
- J. Ning, J. Wang, X. L. Li, T. F. Qiu, B. Luo, L. Hao, M. H. Liang, B. Wangab, and L. J. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films, J. Mater. Chem. A, 2, 10969-10973 (2014). https://doi.org/10.1039/c4ta00527a
- H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stoltenberg, Z. N. Bao, and Y. S. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2, 463-470 (2008). https://doi.org/10.1021/nn700375n
- X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. G. Wang, and H. J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 3, 538-542 (2008). https://doi.org/10.1038/nnano.2008.210
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
-
S. Y. Jeong, S. H. Kim, J. T. Han, H. J. Jeong, S. Y. Jeong, and G. W. Lee, Highly Concentrated and Conductive Reduced Graphene Oxide Nanosheets by Monovalent Cation-
${\pi}$ Interaction Toward Printed Electronics, Adv. Funct. Mater., 22, 3307-3314 (2012). https://doi.org/10.1002/adfm.201200242 - C. Bosch-Navarro, E. Coronado, C. Marti-Gastaldo, J. F. Sanchez-Royo, and M. G. Gomez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions, Nanoscle, 4, 3977-3982 (2012). https://doi.org/10.1039/c2nr30605k
- P. Jomsurang and D. Sakamon, Evaluation of the effects of some additives and pH on surface tension of aqueous solutions using a drop-weight method, J. Food Eng., 70, 219-226 (2005). https://doi.org/10.1016/j.jfoodeng.2004.08.045
- L. M. Yates and R. von Wandruszka, Effects of pH and metals on the surface tension of aqueous humic materials, Soil Sci. Am. J., 63, 1645-1649 (1999). https://doi.org/10.2136/sssaj1999.6361645x
- H. Bai, C. Li, and G. Q. Shi, Functional composite material based on chemically converted graphene, Adv. Mater., 23, 1089-1115 (2011). https://doi.org/10.1002/adma.201003753
- S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- N. I. Park, W. S. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide, Appl. Chem. Eng., 26, 99-103 (2015). https://doi.org/10.14478/ace.2014.1127
- N. Pan, D. Guan, Y. Yang, Z. Huang, R. Wang, Y. Jin, and C. Xia, A rapid low-temperature synthetic method leading to large-scale carboxyl graphene, Chem. Eng. J., 236, 471-479 (2014). https://doi.org/10.1016/j.cej.2013.10.060
- C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev., 43, 291-312 (2014). https://doi.org/10.1039/C3CS60303B
Cited by
- Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1119
- Study on the Thermal Stability of PEDOT/PSS Film Hybrided with Graphene Oxide vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1050