DOI QR코드

DOI QR Code

Feasibility Study on the Use of CFBC Ash as Non-sintered Binder

순환유동층 보일러애시를 활용한 비소성 결합재로써의 활용 가능성 검토

  • 강용학 (한국건설생활환경시험연구원) ;
  • 임귀환 (한국건설생활환경시험연구원) ;
  • 김상준 (가천대학교 토목환경공학과) ;
  • 최영철 (가천대학교 토목환경공학과)
  • Received : 2018.08.03
  • Accepted : 2018.08.31
  • Published : 2018.09.01

Abstract

Recently, the production of circulating fluidized bed combustion ash has been increased in thermal power plants. The addition of limestone for the desulfurizing effect of circulating fluidized bed boiler ash increases the content of CaO and $SO_3$ contained in ash, which is higher than the free fly ash in general fly ash. Unlike conventional fly ash, the circulating fluidized bed combustion ash has a high reactivity when it comes into contact with water due to its hydraulic properties and high free-CaO content. The aim of this study is to investigate the possibility of non-sintered binder by using self-cementing properties of circulating fluidized bed combustion ash. The mechanical and hydration characteristics were investigated according to the content of CFBC ash. In addition, the effects of gymsum type and content on the compressive strength and micro-structure of non-sintered binder pastes.

최근 화력발전소에서는 순환유동층 연소방식의 발전소가 증가하는 추세이다. 순환유동층 보일러애시는 탈황 효과를 위해 석회석을 첨가함에 따라 애시 중에 포함되는 CaO, $SO_3$성분이 증가하여 일반적인 플라이애시 보다 free-CaO 함량이 높다. 또한 순환유동층 보일러애시는 기존의 플라이애시와 다르게 자기수경성 특성과, 높은 free-CaO함량에 의해 물과 만나면 높은 반응성을 갖는다. 본 연구는 순환유동층 보일러애시의 자기수경성 특성을 이용하여, 시멘트를 대체할 수 있는 비소성 결합재로써 활용 가능성에 대해 분석하였다. 순환유동층 보일러 애시의 함량에 따른 역학적 및 수화특성에 대해 검토하였다. 또한 석고의 종류 및 함유량에 따른 순환유동층 보일러애시 활용 비소성 결합재에 대한 압축강도 및 미세구조에 미치는 영향을 분석하였다.

Keywords

References

  1. Armesto, L. and Merino, J. L. (1999), Characterization of some coal combustion solid residues, Fuel, 78, 613-618. https://doi.org/10.1016/S0016-2361(98)00164-1
  2. Anthony, E. J. and Granatstein, D. L. (2001), Sulfation phenomena in fluidized bed combustion systems, Prog. Energy Combust. Sci., 27, 215-236. https://doi.org/10.1016/S0360-1285(00)00021-6
  3. Chi, M. and Huang, R. (2014), Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete, Cem. Concr. Comp., 45, 148-156. https://doi.org/10.1016/j.cemconcomp.2013.10.001
  4. Chindaprasirt, P. and Rattanasak, U. (2010), Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Manag., 30(4), 667-672 https://doi.org/10.1016/j.wasman.2009.09.040
  5. Kang, Y. H. and Jung, S. H. (2017), Material Properties Circulating Fluidized Bed Combustion Fly Ash and Utilization of Non-sintered Cement Field, Magazine of RCR, 12(2), 26-32. (in Korean) https://doi.org/10.14190/MRCR.2017.12.2.026
  6. Koornneef, J., Junginger, M., Faaij, A. (2007), Development of fluidized bed combustion - an overview of trends, performance and cost, Prog. Energy Combust. Sci., 33, 19-55. https://doi.org/10.1016/j.pecs.2006.07.001
  7. KS L 5106 (2009), Testing method for fineness of portland cement by air permeability apparatus, Korean agency for Technology and Standard.
  8. KS L 5110 (2001), Testing method for specific gravity of hydraulic cement, Korean agency for Technology and Standard.
  9. KS L ISO 679 (2006), Methods of testing cements-Determination of strength, Korean agency for Technology and Standard.
  10. KS L ISO 9597 (2009), Determination of setting time and soundness of cements, Korean agency for Technology and Standard.
  11. Lu, J. F., Zhang, J. S., Zhang, H., Liu, Q., Yue, G. X. (2007), Performance evaluation of a 220t/h CFB boiler with water-cooled square cyclones, Fuel Process Technol., 88, 129-135. https://doi.org/10.1016/j.fuproc.2004.12.008
  12. Li, X. G., Chen, Q.B., Huang, K.Z., Ma, B. G., Wu, B. (2012), Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes, Constr. Build. Mater., 36, 182-187. https://doi.org/10.1016/j.conbuildmat.2012.05.017
  13. Sheng, G., Zhai, J., Li, Q., Li, F. (2007), Utilization of fly ash coming from a CFBC boiler cofiring coal and petroleum coke in Portland cement, Fuel, 86, 2625-2631. https://doi.org/10.1016/j.fuel.2007.02.018
  14. Sheng, G., Li, Q., Zhai, J. (2012), Investigation on the hydration of CFBC fly ash, Fuel, 98, 61-66. https://doi.org/10.1016/j.fuel.2012.02.008
  15. Wang, B. and Song, Y. M. (2013), Methods for the control of volume stability of sulfur-rich CFBC ash cementitious system, Mag. Concr. Res., 65(1), 1-5 https://doi.org/10.1680/macr.11.00191
  16. Weekly Brief Issue of Energy (2016), Korea Energy Agency, 134, 3-4. (in Korean)
  17. Xia, Y., Yan, Y., Hu, Z. (2013), Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production, Constr. Build. Mater., 47,1461-1467. https://doi.org/10.1016/j.conbuildmat.2013.06.033
  18. Zhang, Z., Qian, J., You, C., Hu, C. (2012), Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick, Constr. Build. Mater., 35, 109-116. https://doi.org/10.1016/j.conbuildmat.2012.03.006

Cited by

  1. 화력 발전소 매립 석탄회의 화학성분 분석을 통한 시멘트 원료 활용 가능성 연구 vol.24, pp.6, 2020, https://doi.org/10.11112/jksmi.2020.24.6.180
  2. 고로슬래그 기반 순환유동층 플라이애시 및 미분탄 플라이애시 혼입에 따른 시멘트 모르타르의 특성 vol.21, pp.2, 2018, https://doi.org/10.5345/jkibc.2021.21.2.141