Browse > Article
http://dx.doi.org/10.14478/ace.2015.1032

Effect of Amine Compounds on Electrical Properties of Graphene Oxide Films made by Bar Coating  

Choi, Jin Whan (EverChemTech Co., Ltd.)
Lee, Seul Bi (EverChemTech Co., Ltd.)
Lee, Seong Min (EverChemTech Co., Ltd.)
Park, Wan-Su (Department of Polymer Engineering, College of Engineering, Suwon University)
Chung, Dae-Won (Department of Polymer Engineering, College of Engineering, Suwon University)
Publication Information
Applied Chemistry for Engineering / v.26, no.3, 2015 , pp. 331-335 More about this Journal
Abstract
We prepared films by a bar-coating of various graphene oxide (GO) pastes by varying pH with amine compounds. The thermal treatment of films at $150^{\circ}C$ and measurement of surface resistances exhibited that the pH variation does not significantly affect the surface resistance. We, however, found that the addition of amines reduced the surface resistance by approximately 10 times and N,N-dimethylethanolamine (DMEA) showed the most significant effect among all amines investigated. XPS studies demonstrated that the addition of DMEA accelerated the reduction reaction of GO, and finally enhanced the electrical properties of GO films.
Keywords
graphene oxide; film; bar-coating; amine; reduction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007).   DOI   ScienceOn
2 Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010).   DOI   ScienceOn
3 J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011).   DOI   ScienceOn
4 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007).   DOI   ScienceOn
5 V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim, Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating, Carbon, 48, 1945-1951 (2010).   DOI   ScienceOn
6 J. Wang, M. H. Liang, Y. Fang, T. F. Qiu, J. Zhang, and L. J. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater., 24, 2874-2878 (2012).   DOI   ScienceOn
7 J. Ning, J. Wang, X. L. Li, T. F. Qiu, B. Luo, L. Hao, M. H. Liang, B. Wangab, and L. J. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films, J. Mater. Chem. A, 2, 10969-10973 (2014).   DOI   ScienceOn
8 H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stoltenberg, Z. N. Bao, and Y. S. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2, 463-470 (2008).   DOI   ScienceOn
9 X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. G. Wang, and H. J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 3, 538-542 (2008).   DOI   ScienceOn
10 D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101-105 (2008).   DOI   ScienceOn
11 S. Y. Jeong, S. H. Kim, J. T. Han, H. J. Jeong, S. Y. Jeong, and G. W. Lee, Highly Concentrated and Conductive Reduced Graphene Oxide Nanosheets by Monovalent Cation-${\pi}$ Interaction Toward Printed Electronics, Adv. Funct. Mater., 22, 3307-3314 (2012).   DOI   ScienceOn
12 C. Bosch-Navarro, E. Coronado, C. Marti-Gastaldo, J. F. Sanchez-Royo, and M. G. Gomez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions, Nanoscle, 4, 3977-3982 (2012).   DOI   ScienceOn
13 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007).   DOI   ScienceOn
14 P. Jomsurang and D. Sakamon, Evaluation of the effects of some additives and pH on surface tension of aqueous solutions using a drop-weight method, J. Food Eng., 70, 219-226 (2005).   DOI   ScienceOn
15 L. M. Yates and R. von Wandruszka, Effects of pH and metals on the surface tension of aqueous humic materials, Soil Sci. Am. J., 63, 1645-1649 (1999).   DOI   ScienceOn
16 H. Bai, C. Li, and G. Q. Shi, Functional composite material based on chemically converted graphene, Adv. Mater., 23, 1089-1115 (2011).   DOI   ScienceOn
17 N. I. Park, W. S. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide, Appl. Chem. Eng., 26, 99-103 (2015).   DOI   ScienceOn
18 N. Pan, D. Guan, Y. Yang, Z. Huang, R. Wang, Y. Jin, and C. Xia, A rapid low-temperature synthetic method leading to large-scale carboxyl graphene, Chem. Eng. J., 236, 471-479 (2014).   DOI   ScienceOn
19 C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev., 43, 291-312 (2014).   DOI