• Title/Summary/Keyword: Thermal effect

Search Result 6,960, Processing Time 0.033 seconds

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

Thermal Model for Power Converters Based on Thermal Impedance

  • Xu, Yang;Chen, Hao;Lv, Sen;Huang, Feifei;Hu, Zhentao
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1080-1089
    • /
    • 2013
  • In this paper, the superposition principle of a heat sink temperature rise is verified based on the mathematical model of a plate-fin heat sink with two mounted heat sources. According to this, the distributed coupling thermal impedance matrix for a heat sink with multiple devices is present, and the equations for calculating the device transient junction temperatures are given. Then methods to extract the heat sink thermal impedance matrix and to measure the Epoxy Molding Compound (EMC) surface temperature of the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead of the junction temperature or device case temperature are proposed. The new thermal impedance model for the power converters in Switched Reluctance Motor (SRM) drivers is implemented in MATLAB/Simulink. The obtained simulation results are validated with experimental results. Compared with the Finite Element Method (FEM) thermal model and the traditional thermal impedance model, the proposed thermal model can provide a high simulation speed with a high accuracy. Finally, the temperature rise distributions of a power converter with two control strategies, the maximum junction temperature rise, the transient temperature rise characteristics, and the thermal coupling effect are discussed.

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films (구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향)

  • Hwang, Seulgi;Kim, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window (덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석)

  • Bae, Min-Jung;Kang, Jae-Sik;Choi, Gyeong-Seok;Choi, Hyung-Joung
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

FIRST ATLAS DOMESTIC STANDARD PROBLEM (DSP-01) FOR THE CODE ASSESSMENT

  • Kim, Yeon-Sik;Choi, Ki-Yong;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Baek, Won-Pil;Kim, Kyung-Doo;Sim, Suk-K.;Lee, Eo-Hwak;Kim, Se-Yun;Kim, Joo-Sung;Choi, Tong-Soo;Kim, Cheol-Woo;Lee, Suk-Ho;Lee, Sang-Il;Lee, Keo-Hyoung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.25-44
    • /
    • 2011
  • KAERI has been operating an integral effect test facility, ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation), for accident simulations of advanced PWRs. Regarding integral effect tests, a database for major design basis accidents has been accumulated and a Domestic Standard Problem (DSP) exercise using the ATLAS has been proposed and successfully performed. The ATLAS DSP aims at the effective utilization of an integral effect database obtained from the ATLAS, the establishment of a cooperative framework in the domestic nuclear industry, better understanding of thermal hydraulic phenomena, and an investigation of the potential limitations of the existing best-estimate safety analysis codes. For the first ATLAS DSP exercise (DSP-01), integral effect test data for a 100% DVI line break accident of the APR1400 was selected by considering its technical importance and by incorporating comments from participants. Twelve domestic organizations joined in this DSP-01 exercise. Finally, ten of these organizations submitted their calculation results. This ATLAS DSP-01 exercise progressed as an open calculation; the integral effect test data was delivered to the participants prior to the code calculations. The MARS-KS was favored by most participants but the RELAP5/MOD3.3 code was also used by a few participants. This paper presents all the information of the DSP-01 exercise as well as the comparison results between the calculations and the test data. Lessons learned from the first DSP-01 are presented and recommendations for code users as well as for developers are suggested.

Numerical Analysis of Thermal Deformation of a PCB for Semiconductor Package at Panel, Strip and Unit Levels (수치해석을 이용한 판넬과 스트립 및 유닛 레벨 반도체 패키지용 PCB의 열변형 해석)

  • Cho, Seunghyun;Ko, Youngbae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.23-31
    • /
    • 2019
  • In this study, we conducted numerical analyses using the Taguchi method and finite element method to calculate the thermal deformation of a printed circuit board and the effect of design factors on the thermal deformation. Analysis results showed that the thermal deformation of the panel had the strongest effect on the thermal deformation and shape of the strip and unit. In particular, the deformation in the z direction was larger than that in the xy-plane direction. The effect of design factors and the design conditions for reducing the thermal deformation of the panel and strip changed at the unit level. Therefore, it is recommended that panel-level thermal deformation must be controlled to reduce the final thermal deformation at the unit level because the thermal deformation of the strip strongly affects that of the unit.

A Study on the Modeling Methods of Tower Type Apartment House (탑상형 공동주택의 모델링 방법론에 관한 연구)

  • Lee, Jae-Hyuk;Yoon, Sung-Hoon;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.39-46
    • /
    • 2010
  • This study is focused on the effect of thermal load according to the various plan types in tower-type apartment in Korea. So, we chose the '』' type model in order to analyze the shading effect of the plan type. The main results are as follows. In chosen model, cooling energy demands are more sensitive than heating ones when is compared with the two methods. And there are about 10% deviations between new and conventional method. Because new method considers more detailed than conventional one about the building geometries. We also found that this building type affects to the about 3 floors from the top and it doesn't affect to the thermal load in lower floors. From these facts, we suggest new modeling method to the similar researches that will be analyzed the thermal load on the tower type apartment in Korea. Also there is no difference of the thermal load in each azimuth between simple and detailed modeling method. Consequently, we judge that this new method considered the shading effect will be used a lot to the similar analysis in tower type apartment in Korea.

Dynamic modeling of nonlocal compositionally graded temperature-dependent beams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.141-164
    • /
    • 2018
  • In this paper, the thermal effect on buckling and free vibration characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and mode number on the critical buckling temperature and normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Estimating the cooling effect of see breeze along canals and outdoor thermal comfort on urban heat load in summer (해풍(海風)을 이용한 하계(夏季) 도시열환경(都市熱環境)의 풍도(風道)계획과 인체의 쾌적성에 관한 연구)

  • Jeong, Chang-Won;Yoon, In;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • A new urban design method from the viewpoint of climate is considered to be desired for urban life. The authors verified on an environmental planning based on new urban design concept which introduced the effect of sea breeze blowing along canals. The field observation of urban thermal environment were carried out to examine the cooling effects of a river through city. The observations were conducted to find the effect of a sea breeze and climate in summer along canals. Effective distance from the sea and cooling effect of the sea breeze on urban temperature was analyzed. The thermal index using outdoor environment was modified with New Effective Temperature ET*. On the basis of the observation. Human thermal comfort is relieved and affected by sea breeze blowing along canals. The canals were utilized as the trail on which sea breeze blows towards the center of city. From these results, The wind trail is one of the effective passive design method from the viewpoint of urban climate.

  • PDF

A Study on the Actual Output and Thermal Effect in Tissue Mimicking Phantom by the Material of the Ultrasonic Transducer (초음파트랜스듀서의 재질에 따른 실출력과 인체모사조직의 온열효과에 관한 연구)

  • Yoo, Sang-Hyun;Choi, Won-Jae;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2015
  • PURPOSE: In this study investigated the thermal effect in tissue mimicking phantom by the material of the ultrasonic transducer in low intensity sonication. METHODS: The material of the ultrasonic transducer was made of ceramic, stainless steel, aluminum. Korea Testing Laboratory was measured of the three kinds of materials the total output of the ultrasonic transducer. Each material was measured core temperature and the actual output depending on the type of transducer. Agarose tissue mimicking phantom and silicone tissue mimicking phantom was made. Transducers made of three kinds of materials were emitted in the phantom. It is shown as a graph about time and temperature and the surface temperature rising speed and deep temperature rise rate was investigated. RESULTS: Ceramic transducers were highest output. Higher than the stainless steel transducer, aluminum had the lowest total output. Deep temperature was the highest in the ceramic transducer, and the surface temperature was the highest in the stainless steel transducer. Thermal images of ceramic transducer showed that a valid output is formed deeper wider than the metal. CONCLUSION: Ceramic transducer is confirmed the excellence than the metal transducer in deep thermal effect and the actual output of the ultrasound.