• 제목/요약/키워드: Thermal diffusion equation

검색결과 64건 처리시간 0.03초

60 μm의 전극 간극을 갖는 FET식 MWCNT 가스센서에서 열 유동 현상 (Thermal Transport Phenomena in the FET Typed MWCNT Gas Sensor with the 60 μm Electrode Distance)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제28권6호
    • /
    • pp.403-407
    • /
    • 2015
  • Generally, MWCNT, with thermal, chemical and electrical superiority, is manufactured with CVD (chemical vapor deposition). Using MWCNT, it is comonly used as gas sensor of MOS-FET structure. In this study, in order to repeatedly detect gases, the author had to effectively eliminate gases absorbed in a MWCNT sensor. So as to eliminate gases absorbed in a MWCNT sensor, the sensor was applied heat of 423[K], and in order to observe how the applied heat was diffused within the sensor, the author interpreted the diffusion process of heat, using COMSOL interpretation program. In order to interpret the diffusion process of heat, the author progressed modeling with the structure of MWCNT gas sensor in 2-dimension, and defining heat transfer velocity($u={\Delta}T/{\Delta}x$), accorded to governing equation within the sensor, the author proposed heat transfer mechanism.

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.

1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가 (Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis)

  • 송태훈;장성용;김범수;장중철
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.

디바이스 시뮬레이션 기술을 이용한 미세 n-MOSFET의 비등온 비형형장에 있어서의 특성해석 (Simulation of Miniaturized n-MOSFET based Non-Isothermal Non-Equilibrium Transport Model)

  • 최원철
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.329-337
    • /
    • 2001
  • This simulator is developed for the analysis of a MOSFET based on Thermally Coupled Energy Transport Model(TCETM). The simulator has the ability to calculate not only stationary characteristics but also non - stationary characteristics of a MOSFET. It solves basic semiconductor devices equations including Possion equation, current continuity equations for electrons and holes, energy balance equation for electrons and heat flow equation, using finite difference method. The conventional semiconductor device simulation technique, based on the Drift-Diffusion Model (DDM), neglects the thermal and other energy-related properties of a miniaturized device. I, therefore, developed a simulator based on the Thermally Coupled Energy Transport Model (TCETM) which treats not only steady-state but also transient phenomena of such a small-size MOSFET. In particular, the present paper investigates the breakdown characteristics in transient conditions. As a result, we found that the breakdown voltage has been largely underestimated by the DDM in transient conditions.

  • PDF

광기록매체용 Ge-Sb-Te 다층 박막의 광학적 특성 및 열전달 특성 (Optcal and thermal diffusion properties of Ge-Sb-Te multi-layered thin films for optical recording media)

  • 김도형;김상준;김상열;안성혁
    • 한국광학회지
    • /
    • 제12권5호
    • /
    • pp.394-400
    • /
    • 2001
  • 다층 박막에서의 빛의 반사와 흡수 및 열전달 방정식을 수치해석적으로 풀어 광기록매체용 다층 박막의 광학적 특성과 열전달 특성을 알아보고 이 두 특성들을 모두 고려하여 광기록에 적합한 레이저의 출력 및 지속시간, 다층 박막 구조 상수를 제시하였다. 그 결과 레이저는 650 nm 파장을 기준으로 출력 18mW, 지속 시간 60 nm가 적당하였으며 박막 구조 상수는 ZnS-SiO$_2$140nm, Ge-Sb-Te 20 nm, ZnS-SiO$_2$20~30nm, Al-alloy 100~150 nm가 적당하였다.

  • PDF

급열법에 의한 K-Na 이온교환 도파로의 굴절율 분포식산출 (Derivation of the refractive index profile equation of K-Na ion-exchange waveguide by a rapid thermal method)

  • 강승민
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1990년도 제5회 파동 및 레이저 학술발표회 5th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.237-241
    • /
    • 1990
  • A detailed theoretical and experimental study of k-na exchange in soda lime silicate glasses by RTP is presented. Concentration profiles i.e. index profiles are given by complementary error function added Gaussian function. The estimated diffusion coefficient is 1.54${\mu}{\textrm}{m}$2/min.

  • PDF

전력용 반도체소자(IGBT)의 모델링에 의한 열적특성 시뮬레이션 (Modeling and Thermal Characteristic Simulation of Power Semiconductor Device (IGBT))

  • 서영수;백동현;조문택
    • 한국화재소방학회논문지
    • /
    • 제10권2호
    • /
    • pp.28-39
    • /
    • 1996
  • A recently developed electro-thermal simulation methodology is used to analyze the behavior of a PWM(Pulse-Width-Modulated) voltage source inverter which uses IGBT(Insulated Gate Bipolar Transistor) as the switching devices. In the electro-thermal network simulation methdology, the simulator solves for the temperature distribution within the power semiconductor devices(IGBT electro-thermal model), control logic circuitry, the IGBT gate drivers, the thermal network component models for the power silicon chips, package, and heat sinks as well as the current and voltage within the electrical network. The thermal network describes the flow of heat form the chip surface through the package and heat sink and thus determines the evolution of the chip surface temperature used by the power semiconductor device models. The thermal component model for the device silicon chip, packages, and heat sink are developed by discretizing the nonlinear heat diffusion equation and are represented in component from so that the thermal component models for various package and heat sink can be readily connected to on another to form the thermal network.

  • PDF

나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구 (Numerical Study of Impact of Microdroplet Containing Nanoparticles)

  • 노상은;손기헌
    • 대한기계학회논문집B
    • /
    • 제36권6호
    • /
    • pp.609-617
    • /
    • 2012
  • 충돌, 퍼짐 및 수축을 포함한 나노입자 혼합 액적의 거동에 대한 수치모사를 수행하였다. 기체-액체 상경계면은 벽면에서의 접촉각 이력현상을 포함한 레벨셋 방법을 이용하여 해석하였다. 액적 내부의 나노입자 분포를 해석하기 위하여 물질의 열확산을 반영한 농도 방정식을 해석에 포함하였다. 수치해석 결과로부터 나노 입자의 분포는 온도의 불균일 분포에 크게 영향을 받는 것을 확인하였다. 나노입자의 농도 집중도에 의한 표면 장력 및 접촉각변화 효과에 대한 연구를 수행하였다.

Modelling the Leipzig Wind Profile with a (k-ε) model

  • Hiraoka, H.
    • Wind and Structures
    • /
    • 제4권6호
    • /
    • pp.469-480
    • /
    • 2001
  • The Leipzig Wind Profile is generally known as a typical neutral planetary boundary layer flow. But it became clear from the present research that it was not completely neutral but weakly stable. We examined whether we could simulate the Leipzig Wind Profile by using a ($k-{\varepsilon}$) turbulence model including the equation of potential temperature. By solving analytically the Second Moment Closure Model under the assumption of local equilibrium and under the condition of a stratified flow, we expressed the turbulent diffusion coefficients (both momentum and thermal) as functions of flux Richardson number. Our ($k-{\varepsilon}$) turbulence model which included the equation of potential temperature and the turbulent diffusion coefficients varying with flux Richardson number reproduced the Leipzig Wind Profile.

Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite

  • Fu, Da-Xue;Feng, Nai-Xiang;Wang, Yao-Wu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2483-2488
    • /
    • 2012
  • The X-ray line broadening technique was used to calculate the grain size of MgO at 1023, 1123, 1223 K respectively either in $CO_2$ or during the thermal decomposition of magnesites in air as well as in vacuum. By referring to the conventional grain growth equation, $D^n=kt$, the activation energy and pre-exponential factor for the process in air are gained as 125.8 kJ/mol and $1.56{\times}10^8\;nm^4/s$, respectively. Ranman spectroscopy was employed to study the surface structure of MgO obtained during calcination of magnesite, by which the mechanism of grain growth was analyzed and discussed. It is suggested that a kind of highly reactive MgO is produced during the thermal decomposition of magnesites, which is exactly the reason why the activation energy of the grain growth during the thermal decomposition of magnesite is lower than that of bulk diffusion or surface diffusion.