Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2483

Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite  

Fu, Da-Xue (School of Materials and Metallurgy, Northeastern University)
Feng, Nai-Xiang (School of Materials and Metallurgy, Northeastern University)
Wang, Yao-Wu (School of Materials and Metallurgy, Northeastern University)
Publication Information
Abstract
The X-ray line broadening technique was used to calculate the grain size of MgO at 1023, 1123, 1223 K respectively either in $CO_2$ or during the thermal decomposition of magnesites in air as well as in vacuum. By referring to the conventional grain growth equation, $D^n=kt$, the activation energy and pre-exponential factor for the process in air are gained as 125.8 kJ/mol and $1.56{\times}10^8\;nm^4/s$, respectively. Ranman spectroscopy was employed to study the surface structure of MgO obtained during calcination of magnesite, by which the mechanism of grain growth was analyzed and discussed. It is suggested that a kind of highly reactive MgO is produced during the thermal decomposition of magnesites, which is exactly the reason why the activation energy of the grain growth during the thermal decomposition of magnesite is lower than that of bulk diffusion or surface diffusion.
Keywords
Grain growth; Kinetics; $CO_2$ adsorption; Highly reactive MgO; Magnesite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Birchal, V. S. S.; Rocha, S. D. F.; Mansur, M. B.; Ciminelli, V. S. T. Can. J. Chem. Eng. 2001, 79, 507.   DOI
2 Gordon, R. S.; Kingery, W. D. J. Am. Ceram. Soc. 1966, 49, 654.   DOI
3 Kim, M. G.; Dahmen, U.; Searcy, A. W. J. Am. Ceram. Soc. 1988, 71, 373.
4 Kotera, Y.; Saito, T.; Terada, M. Bull. Chem. Soc. Jpn. 1963, 36, 195.   DOI
5 Aihara, K.; Chaklader, A. C. D. Acta Metall. 1975, 23, 855.   DOI
6 Lindner, R.; Partitt, G. D. J. Chem. Phys. 1957, 26, 182.   DOI
7 Oishi, Y.; Kingery, W. D. J. Chem. Phys. 1960, 33, 905.   DOI
8 Robertson, W. M. Gordon and Breach: New York, 1967; p 215.
9 Fubini, B.; Bolis, V.; Bailes, M.; Stone, F. S. Solid State Ionics 1989, 32-33(1), 258.   DOI
10 Anderson, P. J.; Morgan, P. L. Trans. Faraday Soc. 1964, 60, 930.   DOI
11 Razouk, R. I.; Mikhail, R. S.; Ragai, J. J. Appl. Chem. Biothchnol. 1973, 23, 51.
12 Evans, J. V.; Whateley, T. L. Trans. Faraday Soc. 1967, 63, 2769.   DOI
13 Fukuda, Y.; Tanabe, K. Bull. Chem. Soc. Jpn. 1973, 46, 1616.   DOI
14 Stark, J. V.; Park, D. G.; Lagadic, I.; Klabunde, K. J. Chem. Mater. 1996, 8, 1904.   DOI
15 Philipp, R.; Omata, K.; Aoki, A.; Fujimoto, K. J. Catal. 1992, 134, 422.   DOI
16 Philipp, R.; Fujimoto, K. J. Phys. Chem. 1992, 96, 9035.
17 Cao, P.; Lu, L.; Lai, M. O. Mater. Res. Bull. 2001, 36, 981.   DOI
18 Zhou, L. Z.; Guo, J. T. Scripta Mater. 1999, 40, 139.
19 Elkind, A.; Barsoum, M. W. J. Mater. Sci. 1996, 31, 6119.   DOI
20 Lewis, D.; Pearson, H. Nature 1962, 196, 162.
21 Varela, J. A.; Whittemore, O. J.; Longo, E. Ceram. Int. 1990, 16, 177.   DOI
22 Sakaguchi, I.; Yurimoto, H.; Sueno, S. Solid State Commun. 1992, 84, 889.   DOI
23 Oishi, Y.; Ando, K.; Yasumura, K. J. Am. Ceram. Soc. 1987, 70, C327-C329.
24 Kwon, H.; Park, D. G. Bull. Korean Chem. Soc. 2009, 30, 2567.   DOI
25 Turaniova, L'.; Paholi , G.; Mateova, K. Thermochim Acta 1996, 277, 75.   DOI
26 Rocha, S. D. F.; Mansur, M. B.; Ciminelli, V. S. T. J. Chem. Technol. Biotechnol. 2004, 79, 816.   DOI
27 Birchal, V. S. S.; Rocha, S. D. F.; Ciminelli, V. S. T. Miner. Eng. 2000, 13, 1629.   DOI