DOI QR코드

DOI QR Code

Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite

  • Fu, Da-Xue (School of Materials and Metallurgy, Northeastern University) ;
  • Feng, Nai-Xiang (School of Materials and Metallurgy, Northeastern University) ;
  • Wang, Yao-Wu (School of Materials and Metallurgy, Northeastern University)
  • Received : 2012.03.22
  • Accepted : 2012.04.02
  • Published : 2012.08.20

Abstract

The X-ray line broadening technique was used to calculate the grain size of MgO at 1023, 1123, 1223 K respectively either in $CO_2$ or during the thermal decomposition of magnesites in air as well as in vacuum. By referring to the conventional grain growth equation, $D^n=kt$, the activation energy and pre-exponential factor for the process in air are gained as 125.8 kJ/mol and $1.56{\times}10^8\;nm^4/s$, respectively. Ranman spectroscopy was employed to study the surface structure of MgO obtained during calcination of magnesite, by which the mechanism of grain growth was analyzed and discussed. It is suggested that a kind of highly reactive MgO is produced during the thermal decomposition of magnesites, which is exactly the reason why the activation energy of the grain growth during the thermal decomposition of magnesite is lower than that of bulk diffusion or surface diffusion.

Keywords

References

  1. Turaniova, L'.; Paholi , G.; Mateova, K. Thermochim Acta 1996, 277, 75. https://doi.org/10.1016/0040-6031(95)02762-9
  2. Rocha, S. D. F.; Mansur, M. B.; Ciminelli, V. S. T. J. Chem. Technol. Biotechnol. 2004, 79, 816. https://doi.org/10.1002/jctb.1038
  3. Birchal, V. S. S.; Rocha, S. D. F.; Ciminelli, V. S. T. Miner. Eng. 2000, 13, 1629. https://doi.org/10.1016/S0892-6875(00)00146-1
  4. Birchal, V. S. S.; Rocha, S. D. F.; Mansur, M. B.; Ciminelli, V. S. T. Can. J. Chem. Eng. 2001, 79, 507. https://doi.org/10.1002/cjce.5450790406
  5. Gordon, R. S.; Kingery, W. D. J. Am. Ceram. Soc. 1966, 49, 654. https://doi.org/10.1111/j.1151-2916.1966.tb13194.x
  6. Kim, M. G.; Dahmen, U.; Searcy, A. W. J. Am. Ceram. Soc. 1988, 71, 373.
  7. Kotera, Y.; Saito, T.; Terada, M. Bull. Chem. Soc. Jpn. 1963, 36, 195. https://doi.org/10.1246/bcsj.36.195
  8. Aihara, K.; Chaklader, A. C. D. Acta Metall. 1975, 23, 855. https://doi.org/10.1016/0001-6160(75)90202-3
  9. Lindner, R.; Partitt, G. D. J. Chem. Phys. 1957, 26, 182. https://doi.org/10.1063/1.1743247
  10. Oishi, Y.; Kingery, W. D. J. Chem. Phys. 1960, 33, 905. https://doi.org/10.1063/1.1731286
  11. Robertson, W. M. Gordon and Breach: New York, 1967; p 215.
  12. Fubini, B.; Bolis, V.; Bailes, M.; Stone, F. S. Solid State Ionics 1989, 32-33(1), 258. https://doi.org/10.1016/0167-2738(89)90230-0
  13. Anderson, P. J.; Morgan, P. L. Trans. Faraday Soc. 1964, 60, 930. https://doi.org/10.1039/tf9646000930
  14. Razouk, R. I.; Mikhail, R. S.; Ragai, J. J. Appl. Chem. Biothchnol. 1973, 23, 51.
  15. Evans, J. V.; Whateley, T. L. Trans. Faraday Soc. 1967, 63, 2769. https://doi.org/10.1039/tf9676302769
  16. Fukuda, Y.; Tanabe, K. Bull. Chem. Soc. Jpn. 1973, 46, 1616. https://doi.org/10.1246/bcsj.46.1616
  17. Stark, J. V.; Park, D. G.; Lagadic, I.; Klabunde, K. J. Chem. Mater. 1996, 8, 1904. https://doi.org/10.1021/cm950583p
  18. Philipp, R.; Omata, K.; Aoki, A.; Fujimoto, K. J. Catal. 1992, 134, 422. https://doi.org/10.1016/0021-9517(92)90332-C
  19. Philipp, R.; Fujimoto, K. J. Phys. Chem. 1992, 96, 9035.
  20. Cao, P.; Lu, L.; Lai, M. O. Mater. Res. Bull. 2001, 36, 981. https://doi.org/10.1016/S0025-5408(01)00578-5
  21. Zhou, L. Z.; Guo, J. T. Scripta Mater. 1999, 40, 139.
  22. Elkind, A.; Barsoum, M. W. J. Mater. Sci. 1996, 31, 6119. https://doi.org/10.1007/BF00354427
  23. Lewis, D.; Pearson, H. Nature 1962, 196, 162.
  24. Varela, J. A.; Whittemore, O. J.; Longo, E. Ceram. Int. 1990, 16, 177. https://doi.org/10.1016/0272-8842(90)90053-I
  25. Sakaguchi, I.; Yurimoto, H.; Sueno, S. Solid State Commun. 1992, 84, 889. https://doi.org/10.1016/0038-1098(92)90453-G
  26. Oishi, Y.; Ando, K.; Yasumura, K. J. Am. Ceram. Soc. 1987, 70, C327-C329.
  27. Kwon, H.; Park, D. G. Bull. Korean Chem. Soc. 2009, 30, 2567. https://doi.org/10.5012/bkcs.2009.30.11.2567

Cited by

  1. Effect of Steam on Partial Decomposition of Dolomite vol.54, pp.20, 2015, https://doi.org/10.1021/acs.iecr.5b00049
  2. = 1–6) clusters pp.1029-0338, 2018, https://doi.org/10.1080/01411594.2018.1527915
  3. Nucleation and Condensation of Magnesium Vapor in Argon Carrier vol.10, pp.11, 2012, https://doi.org/10.3390/met10111441