• 제목/요약/키워드: Thermal coefficient of resistance

검색결과 309건 처리시간 0.029초

Effectiveness of medical coating materials in decreasing friction between orthodontic brackets and archwires

  • Arici, Nursel;Akdeniz, Berat S.;Oz, Abdullah A.;Gencer, Yucel;Tarakci, Mehmet;Arici, Selim
    • 대한치과교정학회지
    • /
    • 제51권4호
    • /
    • pp.270-281
    • /
    • 2021
  • Objective: The aim of this in vitro study was to evaluate the changes in friction between orthodontic brackets and archwires coated with aluminum oxide (Al2O3), titanium nitride (TiN), or chromium nitride (CrN). In addition, the resistance of the coatings to intraoral conditions was evaluated. Methods: Stainless steel canine brackets, 0.016-inch round nickel-titanium archwires, and 0.019 × 0.025-inch stainless steel archwires were coated with Al2O3, TiN, and CrN using radio frequency magnetron sputtering. The coated materials were examined using scanning electron microscopy, an X-ray diffractometer, atomic force microscopy, and surface profilometry. In addition, the samples were subjected to thermal cycling and in vitro brushing tests, and the effects of the simulated intraoral conditions on the coating structure were evaluated. Results: Coating of the metal bracket as well as nickel-titanium archwire with Al2O3 reduced the coefficients of friction (CoFs) for the bracket-archwire combination (p < 0.01). When the bracket and stainless steel archwire were coated with Al2O3 and TiN, the CoFs were significantly lower (0.207 and 0.372, respectively) than that recorded when this bracket-archwire combination was left uncoated (0.552; p < 0.01). The friction, thermal, and brushing tests did not deteriorate the overall quality of the Al2O3 coatings; however, some small areas of peeling were evident for the TiN coatings, whereas comparatively larger areas of peeling were observed for the CrN coatings. Conclusions: Our findings suggest that the CoFs for metal bracket-archwire combinations used in orthodontic treatment can be decreased by coating with Al2O3 and TiN thin films.

액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향 (Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC)

  • 정헌채;윤한기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

single phase-vanadium dioxide 박막을 이용한 온도센서에 관한 연구 (A temperature sensor using single phase-vanadium dioxide thin films)

  • 김지홍;홍성민;곽연화;박순섭;황학인;문병무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.109-110
    • /
    • 2006
  • In bio applications, high temperature coefficient of resistance (TCR) at $30^{\circ}C{\sim}40^{\circ}C$ is especially important for a temperature sensor. In this work, single phase-vanadium dioxide ($VO_2$) thin films for temperature sensor were fabricated by reactive DC magnetron sputtering and post-annealing method. VOx thin films deposited by reactive sputtering in a controlled $Ar/O_2$ atmosphere can be transformed into single phase-$VO_2$ films by post-annealing in $N_2$ atmosphere. The grown $VO_2$ thin films have a moderate resistance at room temperature and very high TCR at room temperature and transition temperature, respectively 2.88%/K and 15.8%/K. A detailed structural characterization is performed by SEM, XRD and RBS. SEM morphology image indicates that grains of fabricated $VO_2$films are homogeneous and ball-like in shape. A fact that the films contain only single phase-$VO_2$ is obtained by XRD and RBS analysis. After deposition, the sensors were fabricated by micromachining technology. Silicon nitride membrane and black nickel were used for a thermal isolation structure and absorption layer. In the vicinity of room temperature, the TCR of sensors was enough high to apply for bio sensors.

  • PDF

연속철근콘크리트(CRCP) 종방향 철근의 초기거동 분석 (Analysis of Longitudinal Steel Behaviors of Continuously Reinforced Concrete Pavement at Early Age)

  • 남정희;전성일
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.59-67
    • /
    • 2014
  • PURPOSES : The purpose of this study is to analyse the longitudinal steel strain and stress of continuously reinforced concrete pavement(CRCP) with longitudinal and transverse direction at early age using stress dependent strain analysis method. METHODS : To measure the longitudinal steel strain, 9-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10min. intervals during 30days. In order to properly analyze the steel stress first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into stress dependent strain (elastic strain) and stress independent strain (thermal strain) and then stress dependent strain was applied to stress calculation of longitudinal steels. RESULTS : Steel strains were successfully measured during 30days. To verify the accuracy of temperature compensation process, measured coefficient of thermal expansion(COTE,$11.46{\times}10^{-6}m/m/^{\circ}C$) of longitudinal steel before paving was compared with that of unrestrained steel. Max. steel stress in the transverse direction shows about 266MPa at 23days after placement. CONCLUSIONS : Steel stresses in the longitudinal and transverse direction have been evaluated. In longitudinal direction, steel stress from the crack was rapidly reduced from 183MPa at crack to 18MPa from 600mm apart the crack. From this observation, stress effective length can be identified as within 600mm apart from the crack. In transverse direction, max. stress point was located near the center of pavement width and stress level(266MPa) is about 66% of yield stress of steel.

유한요소 해석을 이용한 팬아웃 웨이퍼 레벨 패키지 과정에서의 휨 현상 분석 (Warpage Analysis during Fan-Out Wafer Level Packaging Process using Finite Element Analysis)

  • 김금택;권대일
    • 마이크로전자및패키징학회지
    • /
    • 제25권1호
    • /
    • pp.41-45
    • /
    • 2018
  • 기술의 발전과 전자기기의 소형화와 함께 반도체의 크기는 점점 작아지고 있다. 이와 동시에 반도체 성능의 고도화가 진행되면서 입출력 단자의 밀도는 높아져 패키징의 어려움이 발생하였다. 이러한 문제를 해결하기 위한 방법으로 산업계에서는 팬아웃 웨이퍼 레벨 패키지(FO-WLP)에 주목하고 있다. 또한 FO-WLP는 다른 패키지 방식과 비교해 얇은 두께, 강한 열 저항 등의 장점을 가지고 있다. 하지만 현재 FO-WLP는 생산하는데 몇 가지 어려움이 있는데, 그 중 한가지가 웨이퍼의 휨(Warpage) 현상의 제어이다. 이러한 휨 변형은 서로 다른 재료의 열팽창계수, 탄성계수 등에 의해 발생하고, 이는 칩과 인터커넥트 간의 정렬 불량 등을 야기해 대량생산에 있어 제품의 신뢰성 문제를 발생시킨다. 이러한 휨 현상을 방지하기 위해서는 패키지 재료의 물성과 칩 사이즈 등의 설계 변수의 영향에 대해 이해하는 것이 매우 중요하다. 이번 논문에서는 패키지의 PMC 과정에서 칩의 두께와 EMC의 두께가 휨 현상에 미치는 영향을 유한요소해석을 통해 알아보았다. 그 결과 특정 칩과 EMC가 특정 비율로 구성되어 있을 때 가장 큰 휨 현상이 발생하는 것을 확인하였다.

지지격자를 갖는 $6\times{6}$ 봉다발에서의 난류유동 측정 (Measurements of Turbulent Flow In a$6\times{6}$ Rod Bundle with Spacer Grids)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.162-174
    • /
    • 1996
  • 서로 다른 지지격자들이 인접한 6$\times$6 핵연료 봉다발부수로내에서 국부 수력특성인자들을 레이저 유속 측정 장치인 LDV(Laser Doppler Velocimeter)를 이용하여 측정하였다. 6$\times$6 봉다발은 서로 다른 지지격자를 가진 3$\times$6 봉다발이 서로 인접하여 이룬 형상이다. 본 연구에서는 다른 형상과 다른 수력저항을 갖는 지지격자간들의 열수력적 상호작용을 규명하는데 그 목적이 있다. LDV를 이용하여 축방향 및 횡방향 속도, 난류강도 등의 측정 인자들을 측정하였다. 또한 압력강하를 측정하여 지지격자의 손실계수와 봉다발의 마찰계수를 구하였다. 수력실험결과에 근거하여 지지격자에 기인된 열혼합현상에 관한 것을 연구하였다. DNB의 정성적인 기준이라고 할 수 있는 swirl인자를 정의하고 횡방향속도 실험인자로부터 구하였다.

  • PDF

박막형 크로멜-알루멜 다중접합 열전변환기 (Thin Film Chromel-Alumel Multjunction Thermal Converter)

  • 정인식;김진섭;이정희;이종현;신장규;박세일;권성원
    • 전자공학회논문지D
    • /
    • 제36D권9호
    • /
    • pp.37-45
    • /
    • 1999
  • 박막형 다중접합 열전변환기의 시간에 따른 출력 전압 변화를 감소시키기 위해 벌크의 저항온도계수가 매우 적은 EVANOHM-S 합금을 박막 히터재료로 사용하였고, 또한 Seebeck 계수차이가 비교적 작은 크로멜-알루멜 열전쌍을 박막 열전퇴(thermopile)의 열전요소로 하였다. EVANOHM-S 박막 히터의 저항온도계수는 약 $1.4 {\times} 10^4/^{\circ}C$ 였고, 크로멜-알루멜 박막 열전쌍의 Seebeck 계수차이는 약 $38 {\mu}V/K$였다. 열전변환기의 출력 전압 변화는 공기중에서 처음 120초 동안 약 0.06%였고, 약 5분간이상 히터의 예열후 출력전압 변화는 현저히 감소하였다. 10 Hz ~ 10 kHz의 주파수 범위에서 열전변환기의 교류-직류 전압 및 전류 변환 오차범위는 각각 ${\pm}$1.6 ppm 및 ${\pm}$0.7 ppm이었고, 10Hz 이하 또는 10 kHz 이상의 주파수에서는 교류-직류 변환오차가 크게 증가하였다.

  • PDF

에폭시 레진의 경화방법에 따른 이방성 전도필름의 접합신뢰성 및 열적기계적 특성 변화 (A Study on the Thermo-mechanical Characteristics and Adhesion Reliability of Anisotropic Conductive Films Depend on the Curing Methods of Epoxy Resins)

  • 길만석;서경원;김재한;이종원;장은희;정도연;김수자;김정수
    • 폴리머
    • /
    • 제34권3호
    • /
    • pp.191-197
    • /
    • 2010
  • 이방성 전도필름(ACF)의 경화방법을 개선하기 위하여 이미다졸계 경화제 대신에 저온에서도 경화가 빠른 열잠재성 양이온 개시제형 경화제를 사용한 에폭시 수지의 경화를 연구하였다. 경화특성의 분석을 위해 유리전이온도, 저장모듈러스, 열팽창계수를 포함한 열적기계적 특성을 조사하였으며 열사이클, 고온고습 신뢰성을 관찰하였다. 열잠재성 양이온 개시제형 경화제를 사용한 ACF가 이미다졸계 경화제를 사용한 경우보다 경화속도는 빨랐으며, 열팽창계수는 낮았고, $T_g$가 높아서 고온안정성도 우수하였다. 또 낮은 온도와 빠른 경화에도 불구하고 안정적인 접속 저항을 유지하여 높은 신뢰성을 나타내었다. 본 연구를 통하여 에폭시 경화방법은 ACF의 열적기계적 특성과 신뢰성에 큰 영향을 미치는 중요한 인자임을 확인하였다.

A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.543-550
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and $1500^{\circ}C$, respectively. The composite sintered at a heating speed of $25^{\circ}C$/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of $100^{\circ}C$/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and $500^{\circ}C$, the SiC-$ZrB_2$ composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-$ZrB_2$ composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of $1500^{\circ}C$ at a speed of $100^{\circ}C$/min and sintering for 5 min at $1500^{\circ}C$.

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.