• 제목/요약/키워드: Thermal capacitance

검색결과 205건 처리시간 0.03초

Microstructures and Dielectric Properties of SrTiO$_3$-Based BL Capacitor with Content of Ca

  • 김충혁;최운식;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.35-43
    • /
    • 1999
  • Microstructures and dielectric properties of (Sr$\_$1-x/Ca$\_$x/) TiO$_3$-0.006Nb$_2$O$\_$5/ (0.05$\leq$x$\leq$0.2) boundary layer ceramics were investigated. The samples fired in a reducing atmosphere(N$_2$) were painted on the surface with CuO paste for the subsequent grain boundary diffusion, and then annealed at 1100$^{\circ}C$ for 2 hrs. The metal oxide of CuO infiltrated by thermal diffusion from surface of sample presents continuously in not grain but only grain boundary, and makes up thin boundary phase. The SEM photo, and EDAX revealed that CuO was penetrated rapidly into the bulk along the grain boundaries during the annealing. The average grain sizes is continuously increased as the content of substitutional Ca is increased from 5[mol%] to 15[mol%], but the average grain size of the sample with content of 20[mol%] Ca is slightly decreased. In the samples with content of 10∼15[mol%] Ca, excellent dielectric properties were obtained as follows; dielectric constant <25000, dielectric loss <0.3[%], and capacitance change rate as a function of temperature <${\pm}$10[%], respectively. All samples in this study exhibited dielectric relaxation with frequency as a functior of the temperature.

  • PDF

AC구동 고분자유기물소자에서 임피던스의 변화

  • 원범희;배은지;정동근;유세기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.168.1-168.1
    • /
    • 2013
  • 고분자유기물로 사용되는 발광층에 탄소나노튜브를 합성하여 AC로 구동되는 고분자유기물소자를 제작하였다. 고분자유기물소자는 총 4개의 층(ITO/CRS/탄소나노튜브를 함유한 MEH-PPV/Al)으로 구성하였다. ITO가 코팅된 유리기판 위에 발광층을 보호하는 역할을 하는 절연층[cyanoethyl pullulan(CRS)], 유기발광물질인 poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene](MEH-PPV)에 탄소나노튜브의 함량을 조절하여 발광층으로 사용하였으며, 절연층과 발광층은 스핀코우터를 이용하여 증착하다. 마지막으로 thermal evaporator을 이용하여 Al을 증착하였다. 고분자유기물소자는 발광층에 함유된 탄소나노튜브에 함량에 따른 전압, 전류 그리고 밝기 특성을 분석하였다. 탄소나노튜브가 0.015wt% 함유된 고분자유기물소자에서 최대 밝기 특성과 낮은 소비전력을 얻을 수 있었다. 고분자유기물에 탄소나노튜브를 합성된 효과를 알아보기 위하여 임피던스분석을 통하여 고분자유기물소자의 저항, 캐패시턴스, 기생저항을 알아보았다. 고분자유기물소자의 캐패시턴스의 변화는 탄소나노튜브와 고분자 유기물(polymer-CNT matrix) 에서 생성되는 블록들이 매우 얇은 유전층을 구성할 것으로 예상되며 이는 micro-capacitance로 고분자유기물소자의 구동에 영향을 미치는 것으로 예상된다. AC구동 고분자유기물소자에 탄소나노튜브를 함유하여 높은 효율을 얻을 수 있는 장점으로 차세대 디스플레이나 조명으로 탄소나노튜브의 쓰임새를 기대해 본다.

  • PDF

Shallow Trench 식각공정시 발생하는 결함의 후속열처리 및 산화곤정에 따른 거동에 관한 연구 (Effects of Post Annealing and Oxidation Processes on the Shallow Trench Etch Process)

  • 이영준;황원순;김현수;이주옥;이정용;염근영
    • 한국표면공학회지
    • /
    • 제31권5호
    • /
    • pp.237-244
    • /
    • 1998
  • In this stydy, submicron shallow trenches applied to STI(shallow tench isolation) were etched using inductively coupled $CI_2$/HBr and $CI_2/N_2$plasmas and the physical and electrical defects remaining on the etched silicon trench surfaces and the effects of various annealing and oxidation on the removal of the defects were studied. Using high resolution electron microscopy(HRTEM), Physical defects were investigated on the silicon trench surfaces etched in both 90%$CI_2$/ 10%$N_2$ and 50%$CI_2$/50%HBr. Among the areas in the tench such as trench bottom, bottom edge, and sidewall, the most dense defects were found near the trench bottom edge, and the least dense defects were found near the trench bottom edge, and least dense defects compared to that etched with ment as well as hydrogen permeation. Thermal oxidation of 200$\AA$ atthe temperature up to $1100^{\circ}C$apprars not to remove the defects formed on the etched silicon trenches for both of the etch conditions. To remove the physicall defects, an annealing treatment at the temperature high than $1000^{\circ}C$ in N for30minutes was required. Electrical defects measured using a capacitance-voltage technique showed the reduction of the defects with increasing annealing temperature, and the trends were similar to the results on the physical defects obtained using transmission electron microscopy.

  • PDF

독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터 (High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes)

  • 김동원;정현영
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

구리 집전판에 직접 합성한 탄소나노튜브의 전기이중층 커패시터 특성 (Characterization of Electric Double-Layer Capacitors with Carbon Nanotubes Directly Synthesized on a Copper Plate as a Current Collector)

  • 정동원;이창수;박순;오은석
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.419-424
    • /
    • 2011
  • Carbon nanotubes (CNTs) were directly synthesized on a copper (Cu) plate as a current collector by the catalytic thermal vapor deposition method for an electric double-layer capacitor (EDLC) electrode. The diameters of vertically aligned CNTs grown on the Cu plate were 20~30 nm. From cyclic voltammetry (CV) results, the CNTs/Cu electrode showed high specific capacitance with typical profiles of EDLCs. Rectangularshaped CV curves suggested that the CNTs/Cu electrode could be an excellent candidate for an EDLC electrode. The specific capacitances were in a range of 25~75 F/g with a scan rate of 10~100 mV/s and KOH electrolyte concentration 1~6 M, and were maintained up to 1000 charge/discharge cycles due to strong adhesion between the Cu substrate and the CNTs.

Prediction model of 4.5 K sorption cooler for integrating with adiabatic demagnetization refrigerator (ADR)

  • Kwon, Dohoon;Kim, Jinwook;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.23-28
    • /
    • 2022
  • A sorption cooler, which utilizes helium-4 as a working fluid, was previously developed and tested in KAIST. The cooler consists of a sorption pump and a thermosyphon. The developed sorption cooler aims to pre-cool a certain amount of the magnetic refrigerant of an adiabatic demagnetization refrigerator (ADR) from 4.5 K to 2.5 K. To simulate the high heat capacitance of the magnetic refrigerant, liquid helium was utilized not only as a refrigerant for the sorption cooling but also as a thermal capacitor. The previous experiment, however, showed that the lowest temperature of 2.7 K which was slightly higher than the target temperature (2.5 K) was achieved due to the radiation heat leak. This excessive heat leak would not occur when the sorption cooler is completely integrated with the ADR. Thus, based on the experimentally obtained pumping speed, the prediction model for the sorption cooler is developed in this study. The presented model in this paper assumes the sorption cooler is integrated with the ADR and the heat leak is negligible. The model predicts the amount of the liquid helium and the required time for the sorption cooling process. Furthermore, it is confirmed that the performance of the sorption cooler is enhanced by reducing the volume of the thermosiphon. The detailed results and discussions are summarized.

Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm

  • Yan, Mingfei;Hu, Huasi;Hu, Guang;Liu, Bin;He, Chao;Yi, Qiang
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1304-1310
    • /
    • 2021
  • Two-phase flow, especially gas-liquid two-phase flow, has a wide application in industrial field. The diagnosis of two-phase flow parameters, which directly determine the flow and heat transfer characteristics, plays an important role in providing the design reference and ensuring the security of online operation of two-phase flow system. Computer tomography (CT) is a good way to diagnose such parameters with imaging method. This paper has proposed a novel image reconstruction method for thermal neutron CT of two-phase flow with improved simulated annealing (ISA) algorithm, which makes full use of the prior information of two-phase flow and the advantage of stochastic searching algorithm. The reconstruction results demonstrate that its reconstruction accuracy is much higher than that of the reconstruction algorithm based on weighted total difference minimization with soft-threshold filtering (WTDM-STF). The proposed method can also be applied to other types of two-phase flow CT modalities (such as X(𝛄)-ray, capacitance, resistance and ultrasound).

Synthesis of Activated Carbon from a Bio Waste (Flower of Shorea Robusta) Using Different Activating Agents and Its Application as Supercapacitor Electrode

  • Ghosh, Souvik;Samanta, Prakas;Murmu, Naresh Chandra;Kim, Nam Hoon;Kuila, Tapas
    • Composites Research
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2022
  • The activated carbon is a very good choice for using as supercapacitor electrode materials. Herein, the flower of Shorea robusta, a bio-waste material was successfully used to synthesize the activated carbons for application as supercapacitor electrode materials. The activated carbon was synthesized through chemical activation process followed by thermal treatment at 700℃ in presence of N2 atmosphere using KOH, ZnCl2 and H3PO4 as the activating agents. The physicochemical analyses demonstrate that the obtained activated carbons are graphitic in nature and the degree of disorder of the graphitic carbons is changed with the activating agents. The activated carbon obtained from Shorea robusta flower (ACSF-K) electrode shows the specific capacitance of ~610 F g-1 at 2 A g-1 current density, which is higher than ACSF-Z (560 F g-1) and ACSF-H (470 F g-1) electrode material under the identical current density. The synthesized graphitic carbons also demonstrated good rate capability and high electrochemical stability as supercapacitor electrode.

급속열처리산화법으로 형성시킨 $SiO_2$/나노결정 Si의 전기적 특성 연구 (Electrical properties of metal-oxide-semiconductor structures containing Si nanocrystals fabricated by rapid thermal oxidation process)

  • 김용;박경화;정태훈;박홍준;이재열;최원철;김은규
    • 한국진공학회지
    • /
    • 제10권1호
    • /
    • pp.44-50
    • /
    • 2001
  • 전자빔증착법과 이온빔의 도움을 받는 전자빔 증착법(ion beam assisted electron beam deposition; IBAED)법으로 비정질 Si(-200nm) 박막을 p-Si 기판위에 성장하고 이 두 구조를 급속열처리산화(Rapid Thermal Oxidation; RTO)를 시킴으로서 $SiO_2$/나노결정 Si(nanocrystal Si)/p-Si구조를 형성하였다. 그 후 시료 위에 Au 막을 증착함으로서 최종적으로 나노결정이 함유된 MOS(metal-oxide-semiconductor)구조를 완성하였다. 이 MOS구조내의 나노결정 Si의 전하충전 특성을 바이어스 sweep 비율을 변화시키면서 Capacitance-Voltage(C-V) 특성을 측정하여 조사하였다. 전자빔증착시료의 경우에는 $\DeltaV_{FB}$(flatband voltage shift)가 1V 미만의 작은 C-V 이력곡선이 관측된 반면 IBAED 시료의 경우는 $\DeltaV_{FB}$가 22V(2V/s Voltage Sweep비율) 이상인 대단히 큰 C-V 이력곡선이 관측되었다. 전자빔증착중 Ar ion beam을 조사하면 표면 흡착원자이동이 활성화되고 따라서 비정질 Si내에 Si의 핵 생성율이 증가하여 후속 급속열처리산화공정중 이 높은 농도의 핵들이 나노결정 Si으로 자라나게 되고 이렇게 형성된 높은 농도의 나노결정의 전하 충전 및 방전현상이 큰 이력곡선을 나타내는 원인이라고 생각된다. 따라서 IBAED 방법이 고농도의 나노결정 Si을 형성시키는데 유용한 방법이라고 판단된다.

  • PDF

Fabrication and characterization of $WSi_2$ nanocrystals memory device with $SiO_2$ / $HfO_2$ / $Al_2O_3$ tunnel layer

  • Lee, Hyo-Jun;Lee, Dong-Uk;Kim, Eun-Kyu;Son, Jung-Woo;Cho, Won-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2011
  • High-k dielectric materials such as $HfO_2$, $ZrO_2$ and $Al_2O_3$ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the $WSi_2$ nanocrystals nonvolatile memory device with $SiO_2/HfO_2/Al_2O_3$ tunnel layer. The $WSi_2$ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of $SiO_2/HfO_2/Al_2O_3$ (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate $WSi_2$ nanocrystals, the ultrathin $WSi_2$ film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at $900^{\circ}C$ for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick $SiO_2$ control layer was deposited by using ultra-high vacuum magnetron sputtering. For $SiO_2$ layer density, the second post annealing process was carried out at $900^{\circ}C$ for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.

  • PDF