Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.2.121

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes  

Kim, Dong Won (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Jung, Hyunyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.2, 2019 , pp. 121-128 More about this Journal
Abstract
Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.
Keywords
supercapacitor; composite electrolyte; high temperature; ionic liquid; polyurethane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. van Schalkwijk, Nat. Mater., 4, 366 (2005).   DOI
2 A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).   DOI
3 L. Wei and G. Yushin, Nano Energy, 1, 552 (2012).   DOI
4 R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang and Y. Lei, Nano Energy, 8, 231 (2014).   DOI
5 J. R. Miller and P. Simon, Science, 321, 651 (2008).   DOI
6 R. S. Borges, A. M. Reddy, M.-T. Rodrigues, H. Gullapalli, K. Balakrishnam, G. G. Silva and P. M. Ajayan, Sci. Rep., 3, 2572 (2013).   DOI
7 T. Hibino, K. Kobayashi, M. Nagao and S. Kawasaki, Sci. Rep., 5, 7903 (2014).   DOI
8 X. Liu, Z. Wen, D. Wu, H. Wang, J. Yang and Q. Wang, J. Mater. Chem. A, 2, 11569 (2014).   DOI
9 P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008).   DOI
10 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009).   DOI
11 R. Lin, P.-L. Tabernat, S. Fantin, V. Presser, C. R. Perez, F. Malbosc, N. L. Rupesinghe, K. B. Teo, Y. Gogotsi and P. Simon, J. Phys. Chem. Lett., 2, 2396 (2011).   DOI
12 S. Ahmad, M,. Deepa and S. A. Agnihotry, Sol. Energy Mater. Sol. Cells, 92, 184 (2008).   DOI
13 Z. Ueno, A. Inaba, M. Kondoh and M. Watanabe, Langmuir, 24, 5253, (2008).   DOI
14 Product information sheet on the fumed silica. The Sigmaaldrich on the Web. Retrieved December 1, 2005 from http://www.sigmaaldrich.com
15 P. L. Taberna, P. Simon and J. F. Fauvarque, J. Electrochem. Soc., 150, A292 (2003).   DOI
16 Y. Liao, M. Rao, W. Li, C. Tan, J. Yi and L. Chen, Electrochimica Acta, 54, 6396 (2009).   DOI
17 B. Shen, J. Lang, R. Guo, X. Zhang and X. Yan, ACS Appl. Mater. Interfaces, 7, 25378 (2015).   DOI
18 Y. Fu, X. Ma, Q. Yang and X. Zong, Mater. Lett., 57, 1759 (2003).   DOI
19 C. Lu, T. Hoang, T. Doan, H. Zhao, R. Pan, L. Yang, W. Guan and P. Chen, Applied Energy, 170, 58 (2016).   DOI
20 H.Y. Jung, M.B. Karimi, M.G. Hahm, P. M. Ajayan and Y.J. Jung, Sci. Rep., 2, 773, (2012).   DOI
21 S.M. Jung, D.L. Mafra, C.-T. Lin, H.Y. Jung and J. Kong, Nanoscale, 7, 4386 (2015).   DOI