• Title/Summary/Keyword: Thermal boundary layer

Search Result 256, Processing Time 0.024 seconds

Voltage-Current Characteristics of (Sr.Ca)$TiO_3$-based Ceramics with contents of Calcite (Ca 변화량에 따른 (Sr.Ca)$TiO_3$계 세라믹의 전압-전류 특성)

  • Choi, Woon-Shik;Kang, Jae-Hun;Seo, Yong-Jin;Lee, Won-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1384-1386
    • /
    • 2001
  • In this paper, the structural and electrical properties of the $Sr_{1-x}Ca_xTiO_3$($0{\leq}x{\leq}0.2$)-based grain boundary layer ceramics were investigated by X-ray, SEM and V-I system. Increasing content of Ca, the average gram size and the lattice constant were decreased. The relative density of all specimens was > 96%. The 2nd phase formed by thermal diffusing from the surface lead to a very excellent electrical properties, that is, ${\varepsilon}_r$ > 50000, tan${\delta}$ < 0.05, $\Delta$C < ${\pm}$ 10%.

  • PDF

Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow (관내 유동 플라스틱 슬러리의 열전달 특성)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid (압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

Optimization approach of insulation thickness of non-vacuum cryogenic storage tank

  • MZAD, Hocine;HAOUAM, Abdallah
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • Cryogenic insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Insulations are listed in order of increasing performance and, generally, in order of increasing cost. The specific insulation to be used for a particular application is determined through a compromise between cost, ease of application and the effectiveness of the insulation. Consequently, materials, representative test conditions, and engineering approach for the particular application are crucial to achieve the optimum result. The present work is based on energy cost balance for optimizing the thickness of insulated chambers, using foamed or multi layered cryogenic shell. The considered insulation is a uniformly applied outer layer whose thickness varies with the initial and boundary conditions of the studied vessel under steady-state radial heat transfer. An expression of the optimal insulation thickness derived from the total cost function and depending on the geometrical parameters of the container is presented.

Aerodynamic Analysis of Passenger Car with High Accuracy Using H-refinement (H-분할법을 이용한 승용차의 고정도 공력특성 해석)

  • 김태훈;정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.33-41
    • /
    • 2000
  • Three dimensional flow fields around passenger car body was computed by PAM-FLOW, well-known and validated computer program for thermal and fluid analysis. Regarding the computational method, a Navier-Stokes solver based on finite element method with various turbulent models and adaptive grid technique (H-refinement)was adopted. The results were physically reasonable and compared with experimental data, giving good agreement. It was found that three dimensional flow simulation with H-refinement technique had potential for prediction of low fie이 around vehicle and the ability to predict vortex in the wake, which is vital for CFD to be used for automobile aerodynamic calculation.

  • PDF

An Alternative Use of the Heat Transfer Coefficient in Terms of the Gradient Thickness (구배두께를 이용한 대류열전달의 재해석)

  • Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1678-1682
    • /
    • 2000
  • In this article, the concept of gradient thickness is further extended to characterize the gradient behavior of the thermal and momentum boundary layer near a solid surface. The gradient thickness can replace the use of the conventional of the Nusselt and Reynolds numbers in terms of the gradient thickness provides a much easier grasp of the physical and practical meaning of the processes involved. Although there is no urgent need to discard the concept of the conventional convective heat transfer coefficient, the concept of the gradient thickness is believed to serve an efficient tool in helping students understand physics.

Instability Analysis of Natural Convection Flow along Isothermal Vertical Cylindrical Surfaces (등온 수직 원통표면을 연하여 흐르는 자연대류 유동의 파형 불안정성)

  • 유정열;윤준원;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 1989
  • A stability problem on wave instability of natural convection flow along isothermal vertical cylindrical surfaces has been formulated, accounting for the non-parallelism of the basic flow and thermal fields. Then the problem is solved numerically under the simplifying assumption of the parallelism of the basic flow quantities. It is shown that the flow corresponding to the same characteristic boundary layer thickness becomes more stable as the value of the curvature parameter increases. The stability characteristics for Pr=0.7 appear to be more sensitive to the curvature parameter than those for Pr=7.

Flexible Plasma Sheets

  • Cho, Guangsup;Kim, Yunjung
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.23-25
    • /
    • 2018
  • With respect to the electrode structure and the discharge characteristics, the atmospheric pressure plasma sheet of a thin polyimide film is introduced in this study; here, the flexible plasma device of a dielectric-barrier discharge with the ground electrode and the high-voltage electrode formulated on each surface of a polyimide film whose thickness is approximately $100{\mu}m$, that is operated with a sinusoidal voltage at a frequency of 25 kHz and a low voltage from 1 kV to 2 kV is used. The streamer discharge is appeared along the cross-sectional boundary line between two electrodes at the ignition stage, and the plasma is diffused on the dielectric-layer surface over the high-voltage electrode. In the development of a plasma sheet with thin dielectric films, the avoidance of the insulation breakdown and the reduction of the leakage current have a direct influence on the low-voltage operation.

A study on the performance prediction of 4 cycle 4 cylinder S.I. engine considering the unsteady flow in the intake and exhaust pipes (흡배기 관내의 비정상 유동을 고려한 4사이클, 4기통 전기.점화 기관의 성능 예측에 관한 연구)

  • 박성서;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.72-81
    • /
    • 1991
  • In this study, the analytic investigation of the unsteady flow in the intake and exhaust pipes has been carried out using the method of characteristics in one direction to predict volumetric efficiency. Based on the calculated volumetric efficiency, three zone predictive analysis using Wiebe function was applied to predict the engine performance and the results were compared with experiment. Mixture in the cylinder is subdivided into three zones during combustion process in this analysis; adiabatic core zone, thermal boundary layer zone and unburned zone. In each zone, pressure, temperature and gas composition have been calculated. In conclusion, it is possible to take account of the intake and exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparison of prediction with experimental results shows a good agreement on the pressure variation in the intake and exhaust pipes which has a direct influence on the volumetric efficiency and performance of the engine.

  • PDF

A Study on the Heat Transfer Characteristics on Flat Plate Surface by Two-dimensional Impinging Air Jet (평판전열면(平板傳熱面)에 충돌(衝突)하는 2차원충돌분류계(二次元衝突噴流系)의 열전달특성(熱傳達特性)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Kim, S.P.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The purpose of this study is to investigate the heat transfer characteristics and the flow structure in the case of rectangular air jet impinging vertically on the flat heating surface. The maximum value of Nusselt number at stagnation point is observed at H/B=10. It is found that this trend has been caused by the effect of stretching of large scale vortex in the stagnation region. For potential core region the Nusselt number distribution in the downstream of the stagnation point decreases gradually and begins to increase at about X/B=3. From the flow visualization it could be seen that small eddy produced from the nozzle edge grows in large scale and that large scale eddy disturbed the thermal boundary layer on the heating plate. The local average Nusselt number becomes maximum at X/B=0.5 regardless of H/B variation.

  • PDF