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Abstract

A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated
by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are
small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination
of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges
to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted.
For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid
disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the

afore-stated energy content.

1. Introduction

Flow of a flud in a finite, closed cylinder (radius
Ri=r,H) height  z7*), which rotates steadily about its
longitudinal axis, has posed a classical problem. For most
applications, the system Ekman number E{=4*/p Q2" H*
where ,* denotes the viscosity of fluid, , %, the reference

density of fluid at the cylinder wall, ©* the representative
rotation rate of the cylinder] is very small. When all the
components of the solid walls of the container rotate in unison, the
fluid is in rigid-body rotation with rotation rate Q*, and,
therefore, no internal flows in the rotating frame exist. However, if
there are discrepancies A Q* between the rotation rates of the
components of the container walls, flows are generated in the fluid.
The departure from the rigid-body rotation is gauged by the Rossby
number =0/ Q] Attention is focused to the practically
interesting cases of a rapidly-rotating cylinder, E<1, e<], and
studies have described salient characteristics of flows in the
boundary layers and in the interior region. In particular, knowledge
of the Ekman layer and the interior flow constitutes an essential
building block in the understanding of rotating fluid machinery
operations and geophysical fluid dynamics [see, e.g, Greenspan,
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1968; Roberts & Soward, 1978].

One celebrated flow pattern pertinent to E<1, e<] is the
Taylor-Proudman column. This is characterized by the uniformity of
velocities in the axial direction in the inviscid interior region, which
is far away from the solid walls. However, it should be pointed out
that the Taylor-Proudman column is attainable only when the fluid
is incompressible and of constant density. In this case, two forces
in the radial direction are in balance in the inviscid interior, ie.,
the Coriolis force and the pressure gradient, which leads to the
geostrophy [see, ¢.g., Greenspan, 1968; Spohn, Mory & Hopfinger,
1998].

The purpose of the present paper is to undertake a theoretical
examination of the principal mechanisms of flow and energy
transports of a compressible fluid in a rapidly-rotating finite
cylinder. Based on the analytical expositions, the precise conditions
for the Taylor-Proudman column in the steady state will be
delineated. The theoretical endeavors will illuminate the significance
of a particular combination of physical variables, which turns out to
be effective in rationalizing some of the general features of
rotating compressible flows.

2. The mathematical model

At the initial state, a compressible fluid is in a cylinder, which
rotates about the longitudinal
The cylindrical coordinates (»*,9,z*) , together with the
velocity components (g *, v ", w *)viewed from the rotating frame,

z*-axis with rotation rate Q.
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are adopted. For convenience, the z*-axis is aligned in the
vertical direction. The fluid is in isothermal equilibrium with the
container walls at temperature 7" %,. Assuming a perfect gas, the
density of fluid in the basic state is  [e.g, Sakurai & Matsuda,

1974; Bark & Bark, 1976]

0wl #7)=p 5 VOH‘)eXp[lgﬁ( (ﬁ)z_l)]’ 0

and the pressure field is given as

p Bo( r)=p T)o( r)RT Bo- (2)

In the above, superscript * denotes dimensional quantities, and
subscript 00 the initial-state rigid-body rotation, »= »*/ H*,
M=0"rH*/ (yRT §) ?] the Mach number, y the ratio
of specific heats, » =R {/H", and R the gas constant.

Departures from the above initial rigid-body rotation are created
by applying small thermal and/or mechanical perturbations to the
walls of the cylinder. The relative strength of perturbation is
measured by the Rossby number = T/ 7% (or

U*t/(R°H")) , where T** (or U*?) indicates the
magnitude of thermal (or mechanical) perturbation at the walls. It
follows that, for e«<1, as viewed from the frame rotating at Q*,
the dependent variables are  ((e). Neglecting the O( £2) and
higher-order terms, the dimensional linearized governing equations
are [ eg, Morberg et al, 1984] :

Lo o)+ 0w o, ®)

*
~2p 0l v~ Q*zr‘p’=——§fr

+ /z[( Vz—jlﬁ)uwr(%drﬁ)—;z—*(v- T/*)], @

ZpBoQ'u'=/l*( VZ—_]H)U*, ©)
v

05 _ W[ o i (LA o . e 6

= v (SR - TV 6

— Q%o hut=x"viT", M

P =Rp T+ 0" T - )]

in which g denotes the thermal expansion coefficient,  »* the
coefficient of viscosity, k* the coefficient of thermal
conductivity.

The boundary conditions in dimensional form are :
at the bottom endwall disk z*=gq ,

u'=w'=0, v'=Vilr*) , T = T%r"), (%)
at the top endwall disk z*= H*,

w'=w'=0, v*=Viylr") , T'=T"mr*, ()
and at the cylindrical wall »*= » H*,

w'=w'=0, v'=Viylz") , T'=T%(z", Oc)
in which BW, TW, VW denote, respectively, the bottom horizontal

disk, the top horizontal disk and the cylindrical vertical sidewall.
It is advantageous to split the horizontal boundary conditions into
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symmefric and anti-symmetric parts, ie.,

at 2'=0, u'=w =0, v'=Vi-V%y,
T"=T%—T% (102
At z'=H" u'=w'=0, v'=Vi+ Vi
T'=T%+ T%, (10b)
ot rr=rg Hu =w'=0, v*'=V'p T =T %y (10)
i which V%=(V'mpt+ Vin/2
Va=(V'p— Viw/2
T's=(T "rwt+ T w2 )
T%=(T = T%wl2 ,
and subscripts A and S denote respectively the anti-symmetric and
symmetric parts.

3. Energy budget in the horizontal boundary layer

It is meaningful to consider the balance of the steady-state energy
transport in the horizontal boundary layer on the endwall disk when
a mechanical and/or thermal perturbation is given. For this purpose,
the control volume consists of the annular zone in the horizontal
boundary layer with inner and outer radii (»*, +*4+4r* )
The transports of energy into and out of the control volume are
accounted for, and they consist of three elements : (1) mechanical
work done by the viscous friction at the control surface, SW
{2) heat transfer due to the temperature difference at the boundary
of control volume, ¥ Q*; and (3) energy flux by fluid motion
across the control surface, »w*,. Item(3) is closely related to the
work done by the basic radial pressure gradient when the fluid
moves in the radial direction. This arises when the fluid in the
horizontal boundary layer undergoes radial (horizontal) motions in
the environment of the initially-given radial pressure gradient
described in Eqgs.(1) & (2). The role of sw?* is crucial in the
dynamics of a compressible fluid. The radially-moving fluid does
the pressure-gradient work, s W™, and this is associated with the
compression (or expansion), which leads to the heating (or cooling).
The resultant effect is akin to that of a heat source (or sink) placed
inside the boundary layer. It is important to recognize that, in the
case of a compressible fluid, temperature changes occur in the
interior even when there are no temperature changes imposed at the
boundary walls. Consequently, the velocity and temperature fields in
the interior are generally z *-dependent. This is a significant feature
which distinguishes a compressible-fluid motion from that of an
incompressible fluid.

In the ensuing discussion, the thickness of horizontal boundary
layer is §%~0O(EY? H*) [see, Sakurai & Matsuda, 1974;
Harada, 1979]. Under the assumption of e<1, & »*<«1, the
higher order terms will be neglected.

The rate of mechanical work, s w?, transferred from the
exterior to the interior of the control volume, is

* * % s e *
ZW/: “ §S'( n Vv V*inerﬁal) ° V inertialds .

Above integration can be approximated as



SWiE( W) ., (W) .+l e E)
*p *p o
~ #xs[(a_vmtftmz> _(_a_”mtﬁm) ]( 2 rHA*
0z s dz 2"=0
1)
In the above, A*=2x¢*dr*

The rate of heat transfer 3 ¢*, transported from the exterior to
the interior of the control volume, is
5Q'=ck’$ n"-v T dS"
o
The above integration can be approximated as
2Q'=( Q" ,-s,—( QY . (+XeE'™)
*p *p
r{[522) | AT Ja o
dz JREPY dz 2 =0
The energy flux Xy *, is carried by the velocity normal to the
control surface. The energy per unit mass is
nt= V ivertiar V. inersial + Cp T

- {Qt ~:2 .
= 9 +CPT00-

Thus, the energy flux to the exterior from the interior of the
control volume is

Wy § (Vs 2 R°AS" (13)
The above integration on the control surface, after some
mathematical manipulations, becomes

N b “»

swize | () (D) gt A
< =3 o 2'=0

(14

In summary, under <1, FE<], in the steady horizontal
boundary layer, the net total energy transport s E* to the control
volume at an arbitrary radial position  ,* should be zero :

SE'=SWi+2Q"—SW,=0 , (15)
which gives
6762_* (_2L Q r utv *nl:tating-,_ k* Tw)

at 2°=487%

—e e (L0 0 et £ T . (16)

=g "
dz 2 at 2°=0

A physical rationalization for Eq.(16) is in order. For a steady
flow in the horizontal boundary layer of a compressible rotating
fluid, the vertical gradients of  the quantity

s(‘%‘ Q5" 1 v et R T*f’) at the horizontal wall

and at the edge of the boundary layer should be the same. It is
recalled that the normal gradient of the  quantity

e(—ZL Qv w0 et BT T*i’) indicates the rate of
energy transport across the control surface. Consequently, Eq.(16)
states that the steady Ekman boundary layer of a compressible fluid
delivers a part of energy that it receives from the wall (from
r*=0 to y*=#* ) to the interior across the edge of the
boundary layer (from ,*=0 to »*=,").

In essence, the total energy transport from the horizontal wall to
the interior is expressed as the normal gradient of the physical

variables grouped in the parenthesis of Eq.(26), ie.,

e(—ZL Q7" " v et B T*P) . (7

By properly nondimensinalizing the quantities in Eq(17) as
r=7r"H*, ov=0v30,JRH", T=T*TY 2
nondimensional quantity, which will, for convenience, be termed the
energy content, is obtained :

5(__2L Q" r*utv *7gtating+ k” T*p)
ek™ Ty
a’=o(y—1) M*/4r3 , aud v
represents  the azimuthal velocity in the rotating frame.
o=p*C%/k" the Prandtl number, and C * denotes the specific

e[= 1= T+2 a?rv(18)

In the above,

heat at constant pressure. For simplicity, the superscript "p" and
subscript "rotating" are omitted in nondimensional variables.

The concept of the energy content ¢ will be of considerable
usefulness. Many of the previously-established flow phenomena can
be explained in a straightforward manner by using o The
introduction of ¢ will aid in rationalizing more fundamental
issues of general rotating compressible-fluid dynamics.

4. Conditions for the Taylor-Proudman column flow
If the Taylor-Proudman column flow prevails in the interior, one
has
(3_1)’@:&@) -0 . (192)
dz at 2°=087%
In the interior, the viscous term is smaller than the other terms,

e, (viscous term)/ (the other term)~O(E). Neglecting

the viscous term in Eq.(6), the pressure in the interior is only a
function of ,*, ie, 9p*/adz =0 . Utlizing p*( »*)
in  Eq.8), Eq(4) gives the relation in the interior that
3V yotatin _ r* 9 T"
9z" 2T 027
Bark & Hultgren, 1979]. Thus, if the interior flow is assumed to
be the Taylor-Proudman column, the temperature condition below
should satisfy, from Eq.(19a):

[see Sakurai & Matsuda, 1974;

(55), 0 (s

Substituting Eqs.(29a) and (29b) into Eq.(26) leads to

(? _J_ * * * * * * —
& 6 z * ( 2 Q rou v mtating+ k T ) at horizontal wall 0
(20)

The foregoing developments point to the conditions for the
Taylor-Proudman column flow of a compressible fluid. It also
stresses the significance of introducing the concepts of energy
transports in the context of the Taylor-Proudman column. This turns
up in the definiion of the afore-stated energy content
=T+2 a?»] , which consists of temperature and angular
momentum modified by the compressibility effect. In view of the
above derivations, the condition to maintain the steady
Taylor-Proudman column in the interior can be readily found from
Eqs.(19a) and (19b) : the net total enmergy transports should be
confined within the horizontal boundary layer, i.e., from Egs.(18)
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and (20)
(_g_g_) at horizontal wall: 0 (21)
Clearly, in the above, z[= z*/ H*] denotes the outward
coordinate normal to the endwall disk.
Eq.(21) will be stated as the conditions for the Taylor-Proudman
column in a compressible rotating fluid.

5. Conclusion

Characteristics of energy ftransfer in a rapidly-rotating
compressible fluid are depicted. There are two types of energy
transfer mechanisms between the rotating disk wall and the fluid :
one is a energy transfer normal to the disk wall, which is
characterized by the gradient of energy content o[=7+2 a?l;
the other is a horizontal convection process, which is very similar
to the typical Ekman layer flow in an incompressible fluid.
However, in rapidly-rotating compressible flows, fluid motions in
the radial direction give rise to the generation (removal) of heat
owing to the compression (expansion) work. These interactions
between the temperature and velocity fields render the problem to
be more complex.

In the horizontal boundary layer, when the Taylor-Proudman
column prevails in the interior flow, the total energy in the steady
state  is balanced as follows : a half of the mechanical energy
input from the rotating horizontal disk is consumed to overcome the
basic radial pressure gradient and to sustain the Ekman boundary
layer flow in the radial direction. The rest of the mechanical energy
input is converted into the thermal energy in the Ekman layer and
is withdrawn to the disk wall.

By undertaking a detailed analysis of energy transports in the
boundary layer, the conditions to maintain the steady
Taylor-Proudman column in the interior are derived: the normal

gradient of energy content ¢ should be identically zero at the

(n-ve) =0. In

at  the hovizontal wall

should satisfy the three
characteristic properties : (1) the values of the energy content ¢
should be the same at both the top and bottom horizontal disks at

horizontal wall disk, ie.,

this case, the energy content

r=, (2) the value of £ in the interior at ,= » is identical to

the value ¢ at the horizontal disk,; (3) the value of o at the
vertical wall should be the same as the value of ¢ at the
horizontal disk at = », Under the condition of the
Taylor-Proudman column, ali the energy transports are accomplished
through the boundary layer.

The concept of the energy variable ¢ is very useful in
rationalizing these physical processes.
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