• 제목/요약/키워드: Thermal bending

검색결과 472건 처리시간 0.027초

필라멘트 와인딩 장력에 따른 Composite Bushing의 특성에 관한 연구 (Properties of Composite Bushing with Filament Winding Tension)

  • 조한구;김광용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.34-34
    • /
    • 2010
  • This paper describes effect of the bending deformation of high voltage composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual deflection was decreased in the range of 14.0~12.2 mm.

  • PDF

다층중간재를 사용한 질화규소/스테인레스 강 접합체의 잔류응력 해석 및 기계적 특성 (FEM Residual Stress Analysis and Mechanical Properties of Silicon Nitride/Stainless Steel Joint with Multi-Interlayer)

  • 박상환;김태우;최영화
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.127-134
    • /
    • 1996
  • The thermal residual stresses were estimated for brazed Si3N4/S.S.316 joints with Cu/Mo multi-interlayers using FEM, and their bending strengths at room temperature were measured for various interlayer configura-tions. The Cu, Mo multi-interlayer decreased the maximum residual stress in Si3N4 and caused the residual stress redistribution rsulting in the high residual stress at Mo interlayer. The stress distribution in the joints as well as the maximum residual stress in silicon nitride were found to be main factors for determining bending strengths and Weibull modulous of the joints. The bending strength of the brazed Si3N4/S.S.316 joints with specific Cu, Mo multi-interlayer system were found to be above 400 MPa.

  • PDF

열-기계적 시험에 따른 초고압 폴리머 부싱의 굽힘변형 및 기밀성능에 관한 연구 (Performance of Sealing Integrity and Banding strain of HV Polymeric bushing with Thermal Mechanical Test)

  • 조한구;유대훈;강형경;이철호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1441_1441
    • /
    • 2009
  • This paper describes performance of sealing integrity and bending strain of HV polymeric bushing with thermal mechanical test. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As a results, multi winding bushing shows that it has max deflection in the range of 16.5~16.9 mm.

  • PDF

강자성 판의 열-자탄성학적 불안정성 (Thermo-Magneto-Elastic Instability of Ferromagnetic Plates)

  • 이종세;왕성철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.153-160
    • /
    • 2002
  • Based on a generalized variational principle for magneto-thermo-elasticity, a theoretical model is proposed to describe the coupled magneto-thermo-elastic interaction in soft ferromagnetic plates. Using the linearized theory of magneto-elasticity and perturbation technique, we analyze the magneto-elastic and magneto-thermo- elastic instability of simply supported ferromagnetic plates subjected to thermal and magnetic fields. A nonlinear finite element procedure is developed next to simulate the magneto-thermo-elastic behavior of a finite-size ferromagnetic plates. The effects of thermal and magnetic fields on the magneto-thermo-elastic bending and buckling is investigated in some detail.

  • PDF

Zr기 비정질 합금 다이캐스팅 주조품의 부식 특성에 미치는 블라스팅 처리의 영향 (The Effect of Blasting Treatment on the Corrosion Characteristics in the Zr-based Amorphous Alloy Die Castings)

  • 이병철;김성규;박봉규;배차헌;박흥일
    • 한국주조공학회지
    • /
    • 제34권2호
    • /
    • pp.60-66
    • /
    • 2014
  • A Zr-based amorphous alloy specimen was produced by vacuum die casting process. The salt spray test was carried out using the specimens in the as-cast, $Al_2O_3$ and $ZrO_2$ particle blasted state. Using these specimens, the SEM-EDX and XRD analyses, DSC measurement and bending strength test were conducted. After the salt spray test, the specimens were not experienced phase change and thermal characteristics of the alloys were remained unchanged. In the as-cast specimen, corrosion products were not observed. However, in the $Al_2O_3$ particle blasted specimen, pitting corrosion occurred and the detected corrosion products were $ZrCl_2$ and $NaZrO_3$. Due to the salt spray test, bending strength of the $Al_2O_3$ blasted specimens showed about 100 MPa lower strength than the other specimens. The bending fracture surface was vein pattern which was shown typically in the amorphous alloys.

AZX311 마그네슘 합금과 마르텐사이트 강의 V-bending 이후 전류 인가에 따른 스프링백 각도 변화 평가 (Evaluation of Springback Angle Change with Applying Electric Current After V-bending Test on AZX311 Magnesium Alloy and Martensitic Steel)

  • 박주원;정혜진;진성우;김문조;;한흥남
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.177-183
    • /
    • 2018
  • The influence of electric current on the springback characteristics of AZX311 magnesium alloy and martensitic steel after V-bending test is investigated. Various pulsed electric currents are applied into the specimens followed by a V-bending test, and the changes in the springback angle are measured. In order to evaluate not only the thermal effect but also the athermal effect of electric current on the springback angle, the temperature rises resulting from the applied electric current are measured for all test conditions. As a result, it was found that the springback is significantly decreased as the current density increases. As for the martensitic steel, since the dislocation recovery immoderately occurs at a high electric current density condition of $80A/mm^2$, the optimal current density condition should be required.

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

High Thermal Conductivity Silicon Nitride Ceramics

  • Hirao, Kiyoshi;Zhou, You;Hyuga, Hideki;Ohji, Tatsuki;Kusano, Dai
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.380-384
    • /
    • 2012
  • This paper deals with the recent developments of high thermal conductivity silicon nitride ceramics. First, the factors that reduce the thermal conductivity of silicon nitride are clarified and the potential approaches to realize high thermal conductivity are described. Then, the recent achievements on the silicon nitride fabricated through the reaction bonding and post sintering technique are presented. Because of a smaller amount of impurity oxygen, the obtained thermal conductivity is substantially higher, compared to that of the conventional gas-pressure sintered silicon nitride, while the microstructures and bending strengths are similar to each other between these two samples. Moreover, further improvement of the thermal conductivity is possible by increasing ${\beta}/{\alpha}$ phase ratio of the nitrided sample, resulting in a very high thermal conductivity of 177 W/($m{\cdot}K$) as well as a high fracture toughness of 11.2 $MPa{\cdot}m^{1/2}$.

SOI웨이퍼의 마이크로가속도계 센서에 대한 열변형 유한요소해석 (Finite Element Analysis of Thermal Deformations for Microaccelerometer Sensors using SOI Wafers)

  • 김옥삼;구본권;김일수;김인권;박우철
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.12-18
    • /
    • 2002
  • Silicon on insulator(SOI) wafer is used in a variety of microsensor applications in which thermal deformations and other mechanical effects may dominate device Performance. One of major Problems associated with the manufacturing Processes of the microaccelerometer based on the tunneling current concept is thermal deformations and thermal stresses. This paper deals with finite element analysis(FEA) of residual thermal deformations causing popping up, which are induced in micrormaching processes of a microaccelerometer. The reason for this Popping up phenomenon in manufacturing processes of microaccelerometer may be the bending of the whole wafer or it may come from the way the underetching occurs. We want to seek after the real cause of this popping up phenomenon and diminish this by changing manufacturing processes of mic개accelerometer. In microaccelerometer manufacturing process, this paper intend to find thermal deformation change of the temperature distribution by tunnel gap and additional beams. The thermal behaviors analysis intend to use ANSYS V5.5.3.