DOI QR코드

DOI QR Code

Evaluation of Springback Angle Change with Applying Electric Current After V-bending Test on AZX311 Magnesium Alloy and Martensitic Steel

AZX311 마그네슘 합금과 마르텐사이트 강의 V-bending 이후 전류 인가에 따른 스프링백 각도 변화 평가

  • 박주원 (서울대학교 재료공학부, 신소재공동연구소) ;
  • 정혜진 (서울대학교 재료공학부, 신소재공동연구소) ;
  • 진성우 (현대자동차) ;
  • 김문조 (한국생산기술연구원) ;
  • ;
  • 한흥남 (서울대학교 재료공학부, 신소재공동연구소)
  • Received : 2018.04.04
  • Accepted : 2018.04.20
  • Published : 2018.06.01

Abstract

The influence of electric current on the springback characteristics of AZX311 magnesium alloy and martensitic steel after V-bending test is investigated. Various pulsed electric currents are applied into the specimens followed by a V-bending test, and the changes in the springback angle are measured. In order to evaluate not only the thermal effect but also the athermal effect of electric current on the springback angle, the temperature rises resulting from the applied electric current are measured for all test conditions. As a result, it was found that the springback is significantly decreased as the current density increases. As for the martensitic steel, since the dislocation recovery immoderately occurs at a high electric current density condition of $80A/mm^2$, the optimal current density condition should be required.

Keywords

References

  1. J. Yanagimoto, T. Oya, S. Kawanishi, N. Tiesler, T. Koseki, 2010, Enhancement of bending formability of brittle sheet metal in multilayer metallic sheets, CIRP Annals - Manuf. Technol. Vol. 59, pp. 287-290. https://doi.org/10.1016/j.cirp.2010.03.109
  2. F. Chen, T. Huang, 2003, Formability of stamping magnesium-alloy AZ31 sheets, J. Mater. Process. Technol. Vol. 142, pp. 643-647. https://doi.org/10.1016/S0924-0136(03)00684-8
  3. C. Chen, 2014, Experimental study on punch radius and grain size effects in V-bending process, Mater. Manuf. Processes Vol. 29, pp. 461-465. https://doi.org/10.1080/10426914.2014.880468
  4. D. Leu, C. Hsieh, 2007, The influence of coining force on spring-back reduction in V-die bending process, J. Mater. Process. Technol. Vol. 196, pp. 230-235.
  5. J. Zhao, P. Zhan, R. Ma, R. Zhai, 2012, Control strategy of over-bending setting round for pipe-end of large pipes by mould press type method, Trans. Nonferrous Met. Soc. China Vol. 22, pp. 329-334. https://doi.org/10.1016/S1003-6326(12)61727-0
  6. E.S. Machlin, 1959, Applied voltage and the plastic properties of "brittle" rock salt, J. Appl. Phys. Vol. 30, pp. 1109-1110.
  7. J.T. Roth, I. Loker, D. Mauck, M. Warner, S.F. Golovashchenko, A. Krause, 2008, Enhanced formability of 5754 alu11minum sheet metal using electric pulsing, Trans. NAMRI/SME Vol. 36, pp. 405-412.
  8. H. Conrad, 2000, Electroplasticity in metals and ceramics, Mater. Sci. Eng. A Vol. 287, pp. 276-287. https://doi.org/10.1016/S0921-5093(00)00786-3
  9. J.-H. Roh, J.-J. Seo, S.-T. Hong, M.-J. Kim, H.N. Han, 2014, The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current, Int. J. Plast. Vol. 58, pp. 84-99. https://doi.org/10.1016/j.ijplas.2014.02.002
  10. H. Conrad, N. Karam, S. Mannan, A. Sprecher, 1988, Effect of electric current pulses on the recrystallization kinetics of copper, Scr. Metall. Vol. 22, pp. 235-238. https://doi.org/10.1016/S0036-9748(88)80340-5
  11. H. Conrad, N. Karam, S. Mannan, 1983, Effect of electric current pulses on the recrystallization of copper, Scr. Metall. Vol. 17, pp. 411-416.
  12. T. Wang, J. Xu, T. Xiao, H. Xie, J. Li, T. Li, Z. Cao, 2010, Evolution of dendrite morphology of a binary alloy under an applied electric current: An in situ observation, Phy. Rev. E Vol. 81, 042601. https://doi.org/10.1103/PhysRevE.81.042601
  13. H.-J. Jeong, M.-J. Kim, J.-W. Park, C.D. Yim, J.J. Kim, O.D. Kwon, P.P. Madakashira, H.N. Han, 2017, Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magnesium alloy, Mater. Sci. Eng. A Vol. 684, pp. 668-676. https://doi.org/10.1016/j.msea.2016.12.103
  14. M.-J. Kim, M.-G. Lee, K. Hariharan, S.-T. Hong, I.-S. Choi, D. Kim, K.H. Oh, H.N. Han, 2017, Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension, Int. J. Plast. Vol. 94, pp. 148-170. https://doi.org/10.1016/j.ijplas.2016.09.010
  15. J. Magargee, F. Morestin, J. Cao, 2013, Characterization of flow stress for commercially pure titanium subjected to electrically assisted deformation, J. Eng. Mater. Technol. Vol. 135, 041003. https://doi.org/10.1115/1.4024394
  16. S. Lin, X. Chu, W. Bao, J. Gao, L. Ruan, 2015, Experimental investigation of pulse current on mechanical behaviour of AZ31 alloy, Mater. Sci. Technol. Vol. 31, pp. 1131-1138. https://doi.org/10.1179/1743284714Y.0000000680
  17. Y.J. Lee, H.-M. Sung, Y. Jin, K. Lee, C.R. Park, G.-H. Kim, H.N. Han, Improvement of mechanical property of air plasma sprayed tungsten film using pulsed electric current treatment, Int. J. Refract. Met. Hard Mater. Vol. 60, pp. 99-103.
  18. W. Ye, R. Le Gall, G. Saindrenan, 2002, A study of the recrystallization of an IF steel by kinetics models, Mater. Sci. Eng. A Vol. 332, pp. 41-46. https://doi.org/10.1016/S0921-5093(01)01715-4
  19. P.S. Ho, T. Kwok, 1989, Elecromigration in metals, Rep. Prog. Phys. Vol. 52, No. 3, pp. 301-348. https://doi.org/10.1088/0034-4885/52/3/002
  20. J.-W. Park, H.-J Jeong, S.-W Jin, M.-J. Kim, K. Lee, J.J. Kim, S.-T. Hong, H.N. Han, 2017, Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy, Mater. Charact. Vol. 133, pp. 70-76. https://doi.org/10.1016/j.matchar.2017.09.021
  21. L. Dong, S. Youkey, J. Bush, J. Jiao, 2007, Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes, J. Appl. Phys. Vol. 101, 024320. https://doi.org/10.1063/1.2430769
  22. M.-J. Kim, K. Lee, K.H. Oh, I.-S. Choi, H.-H. Yu, S.-T. Hong, H.N. Han, 2014, Electric current-induced annealing during uniaxial tension of aluminum alloy, Scr. Mater. Vol. 75, pp. 58-61. https://doi.org/10.1016/j.scriptamat.2013.11.019