1 |
Jedari Salami, S. (2016b), "Dynamic extended high order sandwich panel theory for transient response of sandwich beams with carbon nanotube reinforced face sheets", Aerosp. Sci. Technol., 56, 56-69. https://doi.org/10.1016/j.ast.2016.06.026
DOI
|
2 |
Shen, H. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
DOI
|
3 |
Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Composites: B, 43, 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
DOI
|
4 |
Zhang, L., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111(1), 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035
DOI
|
5 |
Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
DOI
|
6 |
Khater, H.M. and Abd El Gawwad, H.A. (2015), "Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT ", Adv. Nano Res., Int. J., 1(2), 225-242. https://doi.org/10.12989/anr. 2015.3.4.225
DOI
|
7 |
Karimov, K.S., Nabi, J.-U., Ali, R., Fatima, N., Khan, A., Rehman, M.M. and Bashir, M.M. (2020), "Resistive and impedimetric properties of elastic composite based on graphene and CNT under uniaxial compressive displacement", Adv. Compos. Mater., 29(6), 559-568. https://doi.org/10.1080/09243046.2020.1731104
DOI
|
8 |
Zhang, L., Lei, Z.X. and Liew, K.M. (2015b), "Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates", Compos. Struct., 122(1), 172-183. https://doi.org/10.1016/j.compstruct.2014.11.070
DOI
|
9 |
Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51(2), 131-144. https://doi.org/10.1016/j.ijmecsci.2008.12.004
DOI
|
10 |
Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
DOI
|
11 |
Jedari Salami, S. (2018), "Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory", J. Sandw. Struct. Mater., 20(2), 219-248. https://doi.org/10.1177/1099636216649788
DOI
|
12 |
Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
DOI
|
13 |
Kumar, D. and Sirvastava, A. (2016), "Elastic properties of cnt- and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
DOI
|
14 |
Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low. Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
DOI
|
15 |
Zhang, L., Lei, Z.X. and Liew, K.M. (2015a), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method", Compos. Struct., 120(1), 189-199. https://doi.org/10.1016/j.compstruct.2014.10.009
DOI
|
16 |
Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2019), "Mechanical behavior of laminated functionally graded carbon nanotube-reinforced composite plates resting on elastic foundations in thermal environments", J. Compos. Mater., 53(9), 1159-1179. https://doi.org/10.1177/002F0021998318796170
DOI
|
17 |
Hajmohammad, M.H., Zarei, M.S, Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299
DOI
|
18 |
Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double walled carbon nanotube", Struct. Eng. Mech., Int. J., 54(5), 987-998. https://doi.org/10.12989/sem.2015.54.5.987
DOI
|
19 |
Abrate, S. (1998), Impact on Composite Structures, Cambridge University Press, New York, NY, USA.
|
20 |
Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
DOI
|
21 |
Asadi, E., Wang, W. and Qatu, M.S. (2012), "Statics and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94, 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011
DOI
|
22 |
Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53. https://doi.org/10.1016/j.ast.2015.09.011
DOI
|
23 |
Kamarian, S., Bodaghi, M., Pourasghar, A. and Talebi, S. (2016), "Vibrational Behavior of Non-Uniform Piezoelectric Sandwich Beams Made of CNT-Reinforced Polymer Nanocomposite by Considering the Agglomeration Effect of CNTs", Polym. Compos., 38(S1), 553-562. https://doi.org/10.1002/pc.23933
DOI
|
24 |
Kamarian, S., Bodaghi, M., Barbaz Isfahani, R., Shakeri M. and Yas, M.H. (2019), "Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations", Mech. Based Des. Struct. Machines, 49(2), 217-2322. https://doi.org/10.1080/15397734.2019.1674664
DOI
|
25 |
Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
DOI
|
26 |
Navneeth, V., Sankar, S.P., Prasanth, R.S. and Samsingh, R.V. (2020), "Investigation on the mechanical and stealth behavior of CNT based polymer composites", Mater. Today: Proceedings, 39, 1682-1687. https://doi.org/10.1016/j.matpr.2020.06.152
|
27 |
Chavan, G.S. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548. https://doi.org/10.12989/scs.2017.24.5.537
DOI
|
28 |
Chang, T. and Gao, H. (2003), "Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model", J. Mech. Phys. Solids, 51, 1059-1074. https://doi.org/10.1016/S0022-5096(03)00006-1
DOI
|
29 |
Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243
DOI
|
30 |
Ebrahimi, F. and Habibi, S. (2017), "low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069
DOI
|
31 |
Emdadi, M., Mohemmadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC face sheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
DOI
|
32 |
Shen, H. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43, 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
DOI
|
33 |
Shen, H. and Xiang, Y. (2014), "Nonlinear bending of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Eng. Struct., 80, 163-172. https://doi.org/10.1016/j.engstruct.2014.08.038
DOI
|
34 |
Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer-based carbon nanotube composites", Polymer, 47, 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013
DOI
|
35 |
Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17(6), 632-665. https://doi.org/10.1177/1099636215590280
DOI
|
36 |
Hussain, M., Naeem, M.N., Tounesi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-432. https://doi.org/10.1989/anr. 2019.7.6.431
DOI
|
37 |
Jedari Salami, S. (2016a), "Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets", Physica E, 76, 187-197. https://doi.org/10.1016/j.physe.2015.10.015
DOI
|
38 |
Jedari Salami, S. (2017), "Low velocity impact response of sandwich beams with soft cores and carbon nanotube reinforced face sheets based on extended high order sandwich panel theory", Aerosp. Sci. Technol., 66, 165-176. https://doi.org/10.1016/j.ast.2017.03.007
DOI
|
39 |
Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC microplate subjected to magnetic field via FSDT", Adv. Nano Res., Int. J., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405
DOI
|