Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.4.385

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs  

Salami, Sattar Jedari (Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University)
Boroujerdy, Mostafa Sabzikar (Department of Engineering, Firoozkooh Branch, Islamic Azad University)
Bazzaz, Ehsan (Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University)
Publication Information
Advances in nano research / v.10, no.4, 2021 , pp. 385-395 More about this Journal
Abstract
This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.
Keywords
deep cylindrical panel; mechanical and thermal loading; functionally graded carbon nanotube composites;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jedari Salami, S. (2016b), "Dynamic extended high order sandwich panel theory for transient response of sandwich beams with carbon nanotube reinforced face sheets", Aerosp. Sci. Technol., 56, 56-69. https://doi.org/10.1016/j.ast.2016.06.026   DOI
2 Shen, H. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026   DOI
3 Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Composites: B, 43, 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040   DOI
4 Zhang, L., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111(1), 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035   DOI
5 Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001   DOI
6 Khater, H.M. and Abd El Gawwad, H.A. (2015), "Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT ", Adv. Nano Res., Int. J., 1(2), 225-242. https://doi.org/10.12989/anr. 2015.3.4.225   DOI
7 Karimov, K.S., Nabi, J.-U., Ali, R., Fatima, N., Khan, A., Rehman, M.M. and Bashir, M.M. (2020), "Resistive and impedimetric properties of elastic composite based on graphene and CNT under uniaxial compressive displacement", Adv. Compos. Mater., 29(6), 559-568. https://doi.org/10.1080/09243046.2020.1731104   DOI
8 Zhang, L., Lei, Z.X. and Liew, K.M. (2015b), "Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates", Compos. Struct., 122(1), 172-183. https://doi.org/10.1016/j.compstruct.2014.11.070   DOI
9 Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51(2), 131-144. https://doi.org/10.1016/j.ijmecsci.2008.12.004   DOI
10 Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005   DOI
11 Jedari Salami, S. (2018), "Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory", J. Sandw. Struct. Mater., 20(2), 219-248. https://doi.org/10.1177/1099636216649788   DOI
12 Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003   DOI
13 Kumar, D. and Sirvastava, A. (2016), "Elastic properties of cnt- and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085   DOI
14 Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low. Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011   DOI
15 Zhang, L., Lei, Z.X. and Liew, K.M. (2015a), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method", Compos. Struct., 120(1), 189-199. https://doi.org/10.1016/j.compstruct.2014.10.009   DOI
16 Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2019), "Mechanical behavior of laminated functionally graded carbon nanotube-reinforced composite plates resting on elastic foundations in thermal environments", J. Compos. Mater., 53(9), 1159-1179. https://doi.org/10.1177/002F0021998318796170   DOI
17 Hajmohammad, M.H., Zarei, M.S, Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299   DOI
18 Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double walled carbon nanotube", Struct. Eng. Mech., Int. J., 54(5), 987-998. https://doi.org/10.12989/sem.2015.54.5.987   DOI
19 Abrate, S. (1998), Impact on Composite Structures, Cambridge University Press, New York, NY, USA.
20 Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015   DOI
21 Asadi, E., Wang, W. and Qatu, M.S. (2012), "Statics and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94, 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011   DOI
22 Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53. https://doi.org/10.1016/j.ast.2015.09.011   DOI
23 Kamarian, S., Bodaghi, M., Pourasghar, A. and Talebi, S. (2016), "Vibrational Behavior of Non-Uniform Piezoelectric Sandwich Beams Made of CNT-Reinforced Polymer Nanocomposite by Considering the Agglomeration Effect of CNTs", Polym. Compos., 38(S1), 553-562. https://doi.org/10.1002/pc.23933   DOI
24 Kamarian, S., Bodaghi, M., Barbaz Isfahani, R., Shakeri M. and Yas, M.H. (2019), "Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations", Mech. Based Des. Struct. Machines, 49(2), 217-2322. https://doi.org/10.1080/15397734.2019.1674664   DOI
25 Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041   DOI
26 Navneeth, V., Sankar, S.P., Prasanth, R.S. and Samsingh, R.V. (2020), "Investigation on the mechanical and stealth behavior of CNT based polymer composites", Mater. Today: Proceedings, 39, 1682-1687. https://doi.org/10.1016/j.matpr.2020.06.152
27 Chavan, G.S. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548. https://doi.org/10.12989/scs.2017.24.5.537   DOI
28 Chang, T. and Gao, H. (2003), "Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model", J. Mech. Phys. Solids, 51, 1059-1074. https://doi.org/10.1016/S0022-5096(03)00006-1   DOI
29 Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243   DOI
30 Ebrahimi, F. and Habibi, S. (2017), "low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069   DOI
31 Emdadi, M., Mohemmadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC face sheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109   DOI
32 Shen, H. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43, 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004   DOI
33 Shen, H. and Xiang, Y. (2014), "Nonlinear bending of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Eng. Struct., 80, 163-172. https://doi.org/10.1016/j.engstruct.2014.08.038   DOI
34 Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer-based carbon nanotube composites", Polymer, 47, 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013   DOI
35 Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17(6), 632-665. https://doi.org/10.1177/1099636215590280   DOI
36 Hussain, M., Naeem, M.N., Tounesi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-432. https://doi.org/10.1989/anr. 2019.7.6.431   DOI
37 Jedari Salami, S. (2016a), "Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets", Physica E, 76, 187-197. https://doi.org/10.1016/j.physe.2015.10.015   DOI
38 Jedari Salami, S. (2017), "Low velocity impact response of sandwich beams with soft cores and carbon nanotube reinforced face sheets based on extended high order sandwich panel theory", Aerosp. Sci. Technol., 66, 165-176. https://doi.org/10.1016/j.ast.2017.03.007   DOI
39 Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC microplate subjected to magnetic field via FSDT", Adv. Nano Res., Int. J., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405   DOI